Namespaces
Variants
Actions

Quadratic equation

From Encyclopedia of Mathematics
Revision as of 07:34, 18 December 2014 by Richard Pinch (talk | contribs) (recorrected)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An algebraic equation of the second degree. The general form of a quadratic equation is \begin{equation}\label{eq:1} ax^2+bx+c=0,\quad a\ne0. \end{equation} In the field of complex numbers a quadratic equation has two solutions, expressed by radicals in the coefficients of the equation: \begin{equation}\label{eq:2} x_{1,2} = \frac{-b \pm\sqrt{b^2-4ac}}{2a}. \end{equation} When $b^2>4ac$ both solutions are real and distinct, when $b^2<4ac$, they are complex (complex-conjugate) numbers, when $b^2=4ac$ the equation has the double root $x_1=x_2=-b/2a$.

For the reduced quadratic equation \begin{equation} x^2+px+q=0 \end{equation} formula \eqref{eq:2} has the form \begin{equation} x_{1,2}=-\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}. \end{equation} The roots and coefficients of a quadratic equation are related by (cf. Viète theorem): \begin{equation} x_1+x_2=-\frac{b}{a},\quad x_1x_2=\frac{c}{a}. \end{equation} The expression $b^2-4ac$ is called the discriminant of the equation. It is easily proved that $b^2-4ac=(x_1-x_2)^2$, in accordance with the fact mentioned above that the equation has a double root if and only if $b^2=4ac$. Formula \eqref{eq:2} holds also if the coefficients belong to a field with characteristic different from $2$.

Formula \eqref{eq:2} follows from writing the left-hand side of the equation as $a(x+b/2a)^2+(c-b^2/4a)$ (splitting of the square).

References

[a1] K. Rektorys (ed.) , Applicable mathematics , Iliffe (1969) pp. Sect. 1.20

Comments

Over a field of characteristic 2 (cf. Characteristic of a field), the solution by completing the square is no longer available. Instead, by a change of variable, the equation may be written either as $$ X^2 + c = 0 $$ or in Artin--Schreier form $$ X^2 + X + c = 0 \ . $$

In the first case, the equation has a double root $c^{1/2}$. In the Artin--Schreier case, the map $A:X \mapsto X^2+X$ is two-to-one, since $A(X+1) = A(X)$. If $\alpha$ is a root of the equation, so is $\alpha+1$. See Artin-Schreier theorem.

References

[a1] R. Lidl, H. Niederreiter, "Finite fields" , Addison-Wesley (1983); second edition Cambridge University Press (1996) Zbl 0866.11069
How to Cite This Entry:
Quadratic equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quadratic_equation&oldid=35677
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article