Namespaces
Variants
Actions

Difference between revisions of "Pythagorean field"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Pythagorean field)
 
m (→‎References: isbn link)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
A [[field]] in which any sum of two squares is a square.   
+
A [[field]] in which any sum of two squares is a square.  The '''Pythagorean closure''' of a field $K$ is the minimal Pythagorean subfield $K^\pi$ of the algebraic closure $\bar K$ containing $K$. 
 +
 
 +
The '''Pythagoras number''' of a field $K$ is the smallest integer $d$, if it exists, such that every sum of squares in $K$ is already a sum of at most $d$ squares (or $\infty$ if no such number exists).  A Pythagorean field has Pythagoras number equal to $1$.  [[Lagrange theorem|Lagrange's theorem]] implies that the Pythagoras number of the field of rational numbers is $4$.  A finite field has Pythagoras number $1$ (in characteristic $2$) or $2$ (in characteristic $>2$).  Every positive integer occurs as the Pythagoras number of some [[formally real field]].   
  
 
====References====
 
====References====
* J. Milnor; D. Husemoller. "Symmetric Bilinear Forms", Ergebnisse der Mathematik und ihrer Grenzgebiete '''73''' Springer (1973) ISBN 3-540-06009-X, {{ZBL|0292.10016}}
+
* Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'',  Graduate Studies in Mathematics '''67''',  American Mathematical Society (2005) {{ISBN|0-8218-1095-2}} {{ZBL|1068.11023}} {{MR|2104929 }}
 +
* A. R. Rajwade, ''Squares'', London Mathematical Society Lecture Note Series '''171''' Cambridge University Press (1993) {{ISBN|0-521-42668-5}} {{ZBL|0785.11022}}
 +
* J.W. Milnor, D. Husemöller, ''Symmetric bilinear forms'', Ergebnisse der Mathematik und ihrer Grenzgebiete '''73''', Springer-Verlag (1973) {{ISBN|0-387-06009-X}} {{ZBL|0292.10016}}

Latest revision as of 19:33, 15 November 2023

A field in which any sum of two squares is a square. The Pythagorean closure of a field $K$ is the minimal Pythagorean subfield $K^\pi$ of the algebraic closure $\bar K$ containing $K$.

The Pythagoras number of a field $K$ is the smallest integer $d$, if it exists, such that every sum of squares in $K$ is already a sum of at most $d$ squares (or $\infty$ if no such number exists). A Pythagorean field has Pythagoras number equal to $1$. Lagrange's theorem implies that the Pythagoras number of the field of rational numbers is $4$. A finite field has Pythagoras number $1$ (in characteristic $2$) or $2$ (in characteristic $>2$). Every positive integer occurs as the Pythagoras number of some formally real field.

References

  • Tsit Yuen Lam, Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, American Mathematical Society (2005) ISBN 0-8218-1095-2 Zbl 1068.11023 MR2104929
  • A. R. Rajwade, Squares, London Mathematical Society Lecture Note Series 171 Cambridge University Press (1993) ISBN 0-521-42668-5 Zbl 0785.11022
  • J.W. Milnor, D. Husemöller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete 73, Springer-Verlag (1973) ISBN 0-387-06009-X Zbl 0292.10016
How to Cite This Entry:
Pythagorean field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pythagorean_field&oldid=39939