Namespaces
Variants
Actions

Difference between revisions of "Putnam-Fuglede theorems"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 109 formulas out of 110 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 110 formulas, 109 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|partial}}
 
''Fuglede–Putnam theorems, Berberian–Putnam–Fuglede theorems''
 
''Fuglede–Putnam theorems, Berberian–Putnam–Fuglede theorems''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201701.png" /> denote a [[Hilbert space|Hilbert space]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201702.png" /> the algebra of operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201703.png" /> (i.e., bounded linear transformations; cf. [[Linear transformation|Linear transformation]]; [[Operator|Operator]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201704.png" /> the derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201705.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201706.png" />; cf. also [[Derivation in a ring|Derivation in a ring]]) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201707.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201708.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201709.png" /> is normal (cf. [[Normal operator|Normal operator]]; simply choose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017011.png" />). The question whether the converse assertion, namely  "Is kerdAkerdA* for normal A?" , also holds was raised by J. von Neumann in 1942, and answered in the affirmative in 1950 by B. Fuglede [[#References|[a7]]], p. 349, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017012.png" />45. C.R. Putnam extended the Fuglede theorem to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017013.png" />, for normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017015.png" /> [[#References|[a7]]], p. 352, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017016.png" />109, and a beautiful proof of the Putnam–Fuglede theorem was given by M. Rosenblum [[#References|[a7]]], p. 352, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017017.png" />118. Introducing the trick of considering the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017019.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017020.png" />, S.K. Berberian [[#References|[a7]]], p. 347, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017021.png" />9, showed that the Putnam–Fuglede theorem indeed follows from the Fuglede theorem. For this reason, Putnam–Fuglede theorems are sometimes also referred to as Berberian–Putnam–Fuglede theorems.
+
Let $H$ denote a [[Hilbert space|Hilbert space]], $B ( H )$ the algebra of operators on $H$ (i.e., bounded linear transformations; cf. [[Linear transformation|Linear transformation]]; [[Operator|Operator]]), $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ the derivation $\delta _ { A , B } ( X ) = A X - X B$ ($\delta _ { A , A } = \delta _ { A }$; cf. also [[Derivation in a ring|Derivation in a ring]]) and let $\operatorname{ker} \delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$. If $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A ^*}$, then $A$ is normal (cf. [[Normal operator|Normal operator]]; simply choose $X = A$ in $\delta _ { A } ( X )$). The question whether the converse assertion, namely  "Is kerdAkerdA* for normal A?" , also holds was raised by J. von Neumann in 1942, and answered in the affirmative in 1950 by B. Fuglede [[#References|[a7]]], p. 349, $\#$45. C.R. Putnam extended the Fuglede theorem to $\operatorname { ker } \delta _ { A , B } \subseteq \operatorname { ker } \delta _ { A^* , B^* }$, for normal $A$ and $B$ [[#References|[a7]]], p. 352, $\#$109, and a beautiful proof of the Putnam–Fuglede theorem was given by M. Rosenblum [[#References|[a7]]], p. 352, $\#$118. Introducing the trick of considering the operators $\hat { A } = A \oplus B$ and $\hat { X } = ( A , B )$ on $\widehat { H } = H \oplus H$, S.K. Berberian [[#References|[a7]]], p. 347, $\#$9, showed that the Putnam–Fuglede theorem indeed follows from the Fuglede theorem. For this reason, Putnam–Fuglede theorems are sometimes also referred to as Berberian–Putnam–Fuglede theorems.
  
 
The Putnam–Fuglede theorem, namely  "kerdA,BkerdA*,B* for normal A and B" , has since been considered in a large number of papers, and various generalizations of it have appeared over the past four decades. Broadly speaking, these generalizations fall into the following four types:
 
The Putnam–Fuglede theorem, namely  "kerdA,BkerdA*,B* for normal A and B" , has since been considered in a large number of papers, and various generalizations of it have appeared over the past four decades. Broadly speaking, these generalizations fall into the following four types:
  
i) where the normality is replaced by a weaker requirement, such as subnormality or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017023.png" />-hyponormality;
+
i) where the normality is replaced by a weaker requirement, such as subnormality or $p$-hyponormality;
  
 
ii) asymptotic Putnam–Fuglede theorems;
 
ii) asymptotic Putnam–Fuglede theorems;
  
iii) Putnam–Fuglede theorems modulo (proper, two-sided) ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017024.png" />; and
+
iii) Putnam–Fuglede theorems modulo (proper, two-sided) ideals of $B ( H )$; and
  
iv) Putnam–Fuglede theorems in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017026.png" />-space setting. Before briefly examining some of these, note that there exist subnormal operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017028.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017029.png" /> [[#References|[a7]]], p. 107. This implies that in any generalization of the Putnam–Fuglede theorem to a wider class of operators, the hypotheses on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017031.png" /> are not symmetric (and that it is more appropriate to think of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017033.png" /> as being normal in the Putnam–Fuglede theorem).
+
iv) Putnam–Fuglede theorems in a $B$-space setting. Before briefly examining some of these, note that there exist subnormal operators $A$ and $B$ for which $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A  ^ { * } , B ^ { * }}$ [[#References|[a7]]], p. 107. This implies that in any generalization of the Putnam–Fuglede theorem to a wider class of operators, the hypotheses on $A$ and $B$ are not symmetric (and that it is more appropriate to think of $A$ and $B ^ { * }$ as being normal in the Putnam–Fuglede theorem).
  
 
==Asymmetric Putnam–Fuglede theorems.==
 
==Asymmetric Putnam–Fuglede theorems.==
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017035.png" /> are subnormal operators with normal extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017038.png" /> (say) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017039.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017040.png" />, and it follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017042.png" />. This asymmetric extension of the Putnam–Fuglede theorem was proved by T. Furuta [[#References|[a6]]] (though an avatar of this result had already appeared in [[#References|[a10]]]). Following a lot of activity during the 1970s and the 1980s ([[#References|[a2]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a9]]] list some of the references), it is now (1998) known that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017043.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017045.png" /> belonging to a large number of suitably paired classes of operators, amongst them <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017046.png" />-hyponormal (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017047.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017049.png" />-hyponormal, dominant and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017051.png" />-quasi-hyponormal classes [[#References|[a5]]].
+
If $A$ and $B ^ { * }$ are subnormal operators with normal extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017036.png"/> and $\widehat { B^* }  $ on $\widehat { H } = H \oplus H$ (say) and $X \in \operatorname { ker } \delta _ { A , B }$, then $\hat { X } = X \oplus 0 \in \operatorname { ker } \delta _ { \hat{A} , B }$, and it follows that $\hat { X } \in \operatorname { ker } \delta _ { \hat { A } ^ { * } , B  ^ { * }}$ and $X \in \operatorname{ker} \delta _ { A^ * , B ^*}$. This asymmetric extension of the Putnam–Fuglede theorem was proved by T. Furuta [[#References|[a6]]] (though an avatar of this result had already appeared in [[#References|[a10]]]). Following a lot of activity during the 1970s and the 1980s ([[#References|[a2]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a9]]] list some of the references), it is now (1998) known that $\operatorname { ker } \delta _ { A , B } \subseteq \operatorname { ker } \delta _ { A^* , B^* }$ for $A$ and $B ^ { * }$ belonging to a large number of suitably paired classes of operators, amongst them $p$-hyponormal ($0 &lt; p \leq 1$), $M$-hyponormal, dominant and $k$-quasi-hyponormal classes [[#References|[a5]]].
  
 
==Asymptotic Putnam–Fuglede theorems.==
 
==Asymptotic Putnam–Fuglede theorems.==
Given normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017053.png" />, and a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017055.png" /> in some topology (weak operator, strong operator or uniform), does there exist a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017057.png" /> in the same topology such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017058.png" />? The answer to this question is (in general) no, for there exists a normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017059.png" /> and a (non-uniformly bounded) sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017060.png" /> of operators such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017061.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017062.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017063.png" /> [[#References|[a8]]]. If, however, the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017064.png" /> is uniformly bounded, then the answer is in the affirmative for normal (and subnormal) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017066.png" /> [[#References|[a2]]] (and indeed, if one limits oneself to the [[Uniform topology|uniform topology]], for a number of classes of operators [[#References|[a5]]], [[#References|[a9]]]).
+
Given normal $A$ and $B$, and a neighbourhood $\mathcal{N} _ { \epsilon}$ of $0$ in some topology (weak operator, strong operator or uniform), does there exist a neighbourhood $\mathcal N _ { \epsilon } ^ { \prime }$ of $0$ in the same topology such that $\delta _ { A , B } ( X ) \in \mathcal{N} _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in  \mathcal{N}_ { \epsilon }$? The answer to this question is (in general) no, for there exists a normal $A$ and a (non-uniformly bounded) sequence $\{ X _ { n } \}$ of operators such that $\| \delta _ { A } ( X _ { n } ) \| \rightarrow 0$ but $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ for all $n$ [[#References|[a8]]]. If, however, the sequence $\{ X _ { n } \}$ is uniformly bounded, then the answer is in the affirmative for normal (and subnormal) $A$ and $B ^ { * }$ [[#References|[a2]]] (and indeed, if one limits oneself to the [[Uniform topology|uniform topology]], for a number of classes of operators [[#References|[a5]]], [[#References|[a9]]]).
  
 
==Putnam–Fuglede theorems modulo ideals.==
 
==Putnam–Fuglede theorems modulo ideals.==
Say that the Putnam–Fuglede theorem holds modulo an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017067.png" /> if, given normal operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017070.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017071.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017072.png" />. The Putnam–Fuglede theorem holds modulo the compacts (simply consider the Putnam–Fuglede theorem in the Calkin algebra), and does not hold modulo the ideal of finite-rank operators. In a remarkable extension of the Putnam–Fuglede theorem to Schatten-von Neumann ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017074.png" /> (cf. also [[Calderón couples|Calderón couples]]), G. Weiss proved in [[#References|[a12]]] that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017075.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017076.png" />. It has since been proved that the Putnam–Fuglede theorem holds modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017077.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017078.png" /> [[#References|[a1]]], [[#References|[a12]]], and also with normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017080.png" /> replaced by subnormal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017081.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017082.png" />. It is not known if the Putnam–Fuglede theorem holds modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017083.png" />.
+
Say that the Putnam–Fuglede theorem holds modulo an ideal $I$ if, given normal operators $A$ and $B$, $\delta _ { A , B } ( X ) \in I$ implies $\delta _ { A ^ *  , B^ *} ( X ) \in I$ for all $X \in B ( H )$. The Putnam–Fuglede theorem holds modulo the compacts (simply consider the Putnam–Fuglede theorem in the Calkin algebra), and does not hold modulo the ideal of finite-rank operators. In a remarkable extension of the Putnam–Fuglede theorem to Schatten-von Neumann ideals $\mathcal{C} _ { p }$, $1 \leq p &lt; \infty$ (cf. also [[Calderón couples|Calderón couples]]), G. Weiss proved in [[#References|[a12]]] that $\delta _ { A , B } ( X ) \in \mathcal{C} _ { 2 }$ implies $\delta _ { A^{*} , B ^ { * } } ( X ) \in \mathcal{C} _ { 2 }$. It has since been proved that the Putnam–Fuglede theorem holds modulo $\mathcal{C} _ { p }$ for all $1 &lt; p &lt; \infty$ [[#References|[a1]]], [[#References|[a12]]], and also with normal $A$, $B ^ { * }$ replaced by subnormal $A$, $B ^ { * }$. It is not known if the Putnam–Fuglede theorem holds modulo $\mathcal{C} _ { 1 }$.
  
 
==Banach space formulation of the Putnam–Fuglede theorem.==
 
==Banach space formulation of the Putnam–Fuglede theorem.==
Letting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017085.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017089.png" /> are self-adjoint operators such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017091.png" /> (cf. also [[Self-adjoint operator|Self-adjoint operator]]), the Putnam–Fuglede theorem can be written as
+
Letting $A = a + i b$ and $B = c + i d$, where $a$, $b$, $c$, $d$ are self-adjoint operators such that $a b = b a$ and $c d = d c$ (cf. also [[Self-adjoint operator|Self-adjoint operator]]), the Putnam–Fuglede theorem can be written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017092.png" /></td> </tr></table>
+
\begin{equation*} ( a + i b ) x = x ( c + i d ) \Leftrightarrow ( a - i b ) x = x ( c - i d ), \end{equation*}
  
 
or, equivalently,
 
or, equivalently,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017093.png" /></td> </tr></table>
+
\begin{equation*} ( a x - x c ) + i ( b x - x d ) = 0 \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017094.png" /></td> </tr></table>
+
\begin{equation*} \Updownarrow a x - x c = 0 \text { and } b x - x d = 0, \end{equation*}
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017095.png" />. Defining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017096.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017097.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017098.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017099.png" />, it is seen that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170100.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170101.png" /> are Hermitian (i. e., the one-parameter groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170102.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170104.png" /> a real number, are groups of isometries on the [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170105.png" />) which commute. The Putnam–Fuglede theorem now says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170107.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170108.png" />. This version of the Putnam–Fuglede theorem has been generalized to the Banach space setting as follows: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170110.png" /> are commuting Hermitian operators on a complex Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170111.png" />, then, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170112.png" />,
+
for all $x \in B ( H )$. Defining $\mathcal{A}$ and $\mathcal{B}$ by $\mathcal{A} x = a x - x c$ and $\mathcal{B} x = b x - x d$, it is seen that $\mathcal{A}$ and $\mathcal{B}$ are Hermitian (i. e., the one-parameter groups $e ^ { i t {\cal A}}$ and $e ^ { i t \mathcal{B} }$, $t$ a real number, are groups of isometries on the [[Banach space|Banach space]] $B ( H )$) which commute. The Putnam–Fuglede theorem now says that if $x \in B ( H )$ and $( \mathcal{A} + i \mathcal{B} ) x = 0$, then $\mathcal{A} x = 0 = \mathcal{B} x$. This version of the Putnam–Fuglede theorem has been generalized to the Banach space setting as follows: if $\mathcal{A}$ and $\mathcal{B}$ are commuting Hermitian operators on a complex Banach space $V$, then, given $x \in V$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170113.png" /></td> </tr></table>
+
\begin{equation*} ( \mathcal{A} + i \mathcal{B} ) x = 0 \Leftrightarrow \mathcal{A} x = 0 = \mathcal{B} x \end{equation*}
  
 
(see [[#References|[a3]]], [[#References|[a4]]] for more general results).
 
(see [[#References|[a3]]], [[#References|[a4]]] for more general results).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Abdessemed,  E.B. Davies,  "Some commutator estimates in the Schatten classes"  ''J. London Math. Soc.'' , '''39'''  (1989)  pp. 299–308</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S.T.M. Ackermans,  S.J.L. Eijndhoven,  F.J.L. Martens,  "On almost commuting operators"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''86'''  (1983)  pp. 389–391</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Boydazhiev,  "Commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170114.png" /> groups and the Fuglede–Putnam theorem"  ''Studia Math.'' , '''81'''  (1985)  pp. 303–306</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.J. Crabb,  P.G. Spain,  "Commutators and normal operators"  ''Glasgow Math. J.'' , '''18'''  (1977)  pp. 197–198</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.P. Duggal,  "On generalised Putnam–Fuglede theorems"  ''Monatsh. Math.'' , '''107'''  (1989)  pp. 309–332  (See also: On quasi-similar hyponormal operators, Integral Eq. Oper. Th. 26 (1996), 338-345)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Furuta,  "On relaxation of normality in the Fuglede–Putnam theorem"  ''Proc. Amer. Math. Soc.'' , '''77'''  (1979)  pp. 324–328</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  P.R. Halmos,  "A Hilbert space problem book" , Springer  (1982)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  B.E. Johnson,  J.P. Williams,  "The range of a normal derivation"  ''Pacific J. Math.'' , '''58'''  (1975)  pp. 105–122</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M. Radjabalipour,  "An extension of Putnam–Fuglede theorem for hyponormal operators"  ''Math. Z.'' , '''194'''  (1987)  pp. 117–120</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  H. Radjavi,  P. Rosenthal,  "On roots of normal operators"  ''J. Math. Anal. Appl.'' , '''34'''  (1971)  pp. 653–664</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  V. Shulman,  "Some remarks on the Fuglede–Weiss Theorem"  ''Bull. London Math. Soc.'' , '''28'''  (1996)  pp. 385–392</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  G. Weiss,  "The Fuglede commutativity theorem modulo the Hilbert–Schmidt class and generating functions I"  ''Trans. Amer. Math. Soc.'' , '''246'''  (1978)  pp. 193–209  (See also: II, J. Operator Th. 5 (1981), 3-16)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. Abdessemed,  E.B. Davies,  "Some commutator estimates in the Schatten classes"  ''J. London Math. Soc.'' , '''39'''  (1989)  pp. 299–308</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  S.T.M. Ackermans,  S.J.L. Eijndhoven,  F.J.L. Martens,  "On almost commuting operators"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''86'''  (1983)  pp. 389–391</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  K. Boydazhiev,  "Commuting $C_o $ groups and the Fuglede–Putnam theorem"  ''Studia Math.'' , '''81'''  (1985)  pp. 303–306</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  M.J. Crabb,  P.G. Spain,  "Commutators and normal operators"  ''Glasgow Math. J.'' , '''18'''  (1977)  pp. 197–198</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  B.P. Duggal,  "On generalised Putnam–Fuglede theorems"  ''Monatsh. Math.'' , '''107'''  (1989)  pp. 309–332  (See also: On quasi-similar hyponormal operators, Integral Eq. Oper. Th. 26 (1996), 338-345)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  T. Furuta,  "On relaxation of normality in the Fuglede–Putnam theorem"  ''Proc. Amer. Math. Soc.'' , '''77'''  (1979)  pp. 324–328</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  P.R. Halmos,  "A Hilbert space problem book" , Springer  (1982)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  B.E. Johnson,  J.P. Williams,  "The range of a normal derivation"  ''Pacific J. Math.'' , '''58'''  (1975)  pp. 105–122</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  M. Radjabalipour,  "An extension of Putnam–Fuglede theorem for hyponormal operators"  ''Math. Z.'' , '''194'''  (1987)  pp. 117–120</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  H. Radjavi,  P. Rosenthal,  "On roots of normal operators"  ''J. Math. Anal. Appl.'' , '''34'''  (1971)  pp. 653–664</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  V. Shulman,  "Some remarks on the Fuglede–Weiss Theorem"  ''Bull. London Math. Soc.'' , '''28'''  (1996)  pp. 385–392</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  G. Weiss,  "The Fuglede commutativity theorem modulo the Hilbert–Schmidt class and generating functions I"  ''Trans. Amer. Math. Soc.'' , '''246'''  (1978)  pp. 193–209  (See also: II, J. Operator Th. 5 (1981), 3-16)</td></tr></table>

Revision as of 17:02, 1 July 2020

Fuglede–Putnam theorems, Berberian–Putnam–Fuglede theorems

Let $H$ denote a Hilbert space, $B ( H )$ the algebra of operators on $H$ (i.e., bounded linear transformations; cf. Linear transformation; Operator), $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ the derivation $\delta _ { A , B } ( X ) = A X - X B$ ($\delta _ { A , A } = \delta _ { A }$; cf. also Derivation in a ring) and let $\operatorname{ker} \delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$. If $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A ^*}$, then $A$ is normal (cf. Normal operator; simply choose $X = A$ in $\delta _ { A } ( X )$). The question whether the converse assertion, namely "Is kerdAkerdA* for normal A?" , also holds was raised by J. von Neumann in 1942, and answered in the affirmative in 1950 by B. Fuglede [a7], p. 349, $\#$45. C.R. Putnam extended the Fuglede theorem to $\operatorname { ker } \delta _ { A , B } \subseteq \operatorname { ker } \delta _ { A^* , B^* }$, for normal $A$ and $B$ [a7], p. 352, $\#$109, and a beautiful proof of the Putnam–Fuglede theorem was given by M. Rosenblum [a7], p. 352, $\#$118. Introducing the trick of considering the operators $\hat { A } = A \oplus B$ and $\hat { X } = ( A , B )$ on $\widehat { H } = H \oplus H$, S.K. Berberian [a7], p. 347, $\#$9, showed that the Putnam–Fuglede theorem indeed follows from the Fuglede theorem. For this reason, Putnam–Fuglede theorems are sometimes also referred to as Berberian–Putnam–Fuglede theorems.

The Putnam–Fuglede theorem, namely "kerdA,BkerdA*,B* for normal A and B" , has since been considered in a large number of papers, and various generalizations of it have appeared over the past four decades. Broadly speaking, these generalizations fall into the following four types:

i) where the normality is replaced by a weaker requirement, such as subnormality or $p$-hyponormality;

ii) asymptotic Putnam–Fuglede theorems;

iii) Putnam–Fuglede theorems modulo (proper, two-sided) ideals of $B ( H )$; and

iv) Putnam–Fuglede theorems in a $B$-space setting. Before briefly examining some of these, note that there exist subnormal operators $A$ and $B$ for which $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A ^ { * } , B ^ { * }}$ [a7], p. 107. This implies that in any generalization of the Putnam–Fuglede theorem to a wider class of operators, the hypotheses on $A$ and $B$ are not symmetric (and that it is more appropriate to think of $A$ and $B ^ { * }$ as being normal in the Putnam–Fuglede theorem).

Asymmetric Putnam–Fuglede theorems.

If $A$ and $B ^ { * }$ are subnormal operators with normal extensions and $\widehat { B^* } $ on $\widehat { H } = H \oplus H$ (say) and $X \in \operatorname { ker } \delta _ { A , B }$, then $\hat { X } = X \oplus 0 \in \operatorname { ker } \delta _ { \hat{A} , B }$, and it follows that $\hat { X } \in \operatorname { ker } \delta _ { \hat { A } ^ { * } , B ^ { * }}$ and $X \in \operatorname{ker} \delta _ { A^ * , B ^*}$. This asymmetric extension of the Putnam–Fuglede theorem was proved by T. Furuta [a6] (though an avatar of this result had already appeared in [a10]). Following a lot of activity during the 1970s and the 1980s ([a2], [a5], [a6], [a9] list some of the references), it is now (1998) known that $\operatorname { ker } \delta _ { A , B } \subseteq \operatorname { ker } \delta _ { A^* , B^* }$ for $A$ and $B ^ { * }$ belonging to a large number of suitably paired classes of operators, amongst them $p$-hyponormal ($0 < p \leq 1$), $M$-hyponormal, dominant and $k$-quasi-hyponormal classes [a5].

Asymptotic Putnam–Fuglede theorems.

Given normal $A$ and $B$, and a neighbourhood $\mathcal{N} _ { \epsilon}$ of $0$ in some topology (weak operator, strong operator or uniform), does there exist a neighbourhood $\mathcal N _ { \epsilon } ^ { \prime }$ of $0$ in the same topology such that $\delta _ { A , B } ( X ) \in \mathcal{N} _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in \mathcal{N}_ { \epsilon }$? The answer to this question is (in general) no, for there exists a normal $A$ and a (non-uniformly bounded) sequence $\{ X _ { n } \}$ of operators such that $\| \delta _ { A } ( X _ { n } ) \| \rightarrow 0$ but $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ for all $n$ [a8]. If, however, the sequence $\{ X _ { n } \}$ is uniformly bounded, then the answer is in the affirmative for normal (and subnormal) $A$ and $B ^ { * }$ [a2] (and indeed, if one limits oneself to the uniform topology, for a number of classes of operators [a5], [a9]).

Putnam–Fuglede theorems modulo ideals.

Say that the Putnam–Fuglede theorem holds modulo an ideal $I$ if, given normal operators $A$ and $B$, $\delta _ { A , B } ( X ) \in I$ implies $\delta _ { A ^ * , B^ *} ( X ) \in I$ for all $X \in B ( H )$. The Putnam–Fuglede theorem holds modulo the compacts (simply consider the Putnam–Fuglede theorem in the Calkin algebra), and does not hold modulo the ideal of finite-rank operators. In a remarkable extension of the Putnam–Fuglede theorem to Schatten-von Neumann ideals $\mathcal{C} _ { p }$, $1 \leq p < \infty$ (cf. also Calderón couples), G. Weiss proved in [a12] that $\delta _ { A , B } ( X ) \in \mathcal{C} _ { 2 }$ implies $\delta _ { A^{*} , B ^ { * } } ( X ) \in \mathcal{C} _ { 2 }$. It has since been proved that the Putnam–Fuglede theorem holds modulo $\mathcal{C} _ { p }$ for all $1 < p < \infty$ [a1], [a12], and also with normal $A$, $B ^ { * }$ replaced by subnormal $A$, $B ^ { * }$. It is not known if the Putnam–Fuglede theorem holds modulo $\mathcal{C} _ { 1 }$.

Banach space formulation of the Putnam–Fuglede theorem.

Letting $A = a + i b$ and $B = c + i d$, where $a$, $b$, $c$, $d$ are self-adjoint operators such that $a b = b a$ and $c d = d c$ (cf. also Self-adjoint operator), the Putnam–Fuglede theorem can be written as

\begin{equation*} ( a + i b ) x = x ( c + i d ) \Leftrightarrow ( a - i b ) x = x ( c - i d ), \end{equation*}

or, equivalently,

\begin{equation*} ( a x - x c ) + i ( b x - x d ) = 0 \end{equation*}

\begin{equation*} \Updownarrow a x - x c = 0 \text { and } b x - x d = 0, \end{equation*}

for all $x \in B ( H )$. Defining $\mathcal{A}$ and $\mathcal{B}$ by $\mathcal{A} x = a x - x c$ and $\mathcal{B} x = b x - x d$, it is seen that $\mathcal{A}$ and $\mathcal{B}$ are Hermitian (i. e., the one-parameter groups $e ^ { i t {\cal A}}$ and $e ^ { i t \mathcal{B} }$, $t$ a real number, are groups of isometries on the Banach space $B ( H )$) which commute. The Putnam–Fuglede theorem now says that if $x \in B ( H )$ and $( \mathcal{A} + i \mathcal{B} ) x = 0$, then $\mathcal{A} x = 0 = \mathcal{B} x$. This version of the Putnam–Fuglede theorem has been generalized to the Banach space setting as follows: if $\mathcal{A}$ and $\mathcal{B}$ are commuting Hermitian operators on a complex Banach space $V$, then, given $x \in V$,

\begin{equation*} ( \mathcal{A} + i \mathcal{B} ) x = 0 \Leftrightarrow \mathcal{A} x = 0 = \mathcal{B} x \end{equation*}

(see [a3], [a4] for more general results).

References

[a1] A. Abdessemed, E.B. Davies, "Some commutator estimates in the Schatten classes" J. London Math. Soc. , 39 (1989) pp. 299–308
[a2] S.T.M. Ackermans, S.J.L. Eijndhoven, F.J.L. Martens, "On almost commuting operators" Nederl. Akad. Wetensch. Proc. Ser. A , 86 (1983) pp. 389–391
[a3] K. Boydazhiev, "Commuting $C_o $ groups and the Fuglede–Putnam theorem" Studia Math. , 81 (1985) pp. 303–306
[a4] M.J. Crabb, P.G. Spain, "Commutators and normal operators" Glasgow Math. J. , 18 (1977) pp. 197–198
[a5] B.P. Duggal, "On generalised Putnam–Fuglede theorems" Monatsh. Math. , 107 (1989) pp. 309–332 (See also: On quasi-similar hyponormal operators, Integral Eq. Oper. Th. 26 (1996), 338-345)
[a6] T. Furuta, "On relaxation of normality in the Fuglede–Putnam theorem" Proc. Amer. Math. Soc. , 77 (1979) pp. 324–328
[a7] P.R. Halmos, "A Hilbert space problem book" , Springer (1982)
[a8] B.E. Johnson, J.P. Williams, "The range of a normal derivation" Pacific J. Math. , 58 (1975) pp. 105–122
[a9] M. Radjabalipour, "An extension of Putnam–Fuglede theorem for hyponormal operators" Math. Z. , 194 (1987) pp. 117–120
[a10] H. Radjavi, P. Rosenthal, "On roots of normal operators" J. Math. Anal. Appl. , 34 (1971) pp. 653–664
[a11] V. Shulman, "Some remarks on the Fuglede–Weiss Theorem" Bull. London Math. Soc. , 28 (1996) pp. 385–392
[a12] G. Weiss, "The Fuglede commutativity theorem modulo the Hilbert–Schmidt class and generating functions I" Trans. Amer. Math. Soc. , 246 (1978) pp. 193–209 (See also: II, J. Operator Th. 5 (1981), 3-16)
How to Cite This Entry:
Putnam-Fuglede theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Putnam-Fuglede_theorems&oldid=22959
This article was adapted from an original article by B.P. Duggal (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article