Namespaces
Variants
Actions

Difference between revisions of "Projective transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A one-to-one mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753801.png" /> of a [[Projective space|projective space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753802.png" /> onto itself preserving the order relation in the partially ordered (by inclusion) set of all subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753803.png" />, that is, a mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753804.png" /> onto itself such that:
+
<!--
 +
p0753801.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/P075/P.0705380 Projective transformation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753805.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753806.png" />;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
2) for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753807.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753808.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p0753809.png" />;
+
A one-to-one mapping  $  F $
 +
of a [[Projective space|projective space]]  $  \Pi _ {n} $
 +
onto itself preserving the order relation in the partially ordered (by inclusion) set of all subspaces of  $  \Pi _ {n} $,
 +
that is, a mapping of  $  \Pi _ {n} $
 +
onto itself such that:
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538010.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538011.png" />.
+
1) if  $  S _ {p} \subset  S _ {q} $,
 +
then  $  F ( S _ {p} ) \subset  F ( S _ {q} ) $;
 +
 
 +
2) for every  $  \widetilde{S}  _ {p} $
 +
there is an  $  S _ {p} $
 +
such that  $  F ( S _ {p} ) = \widetilde{S}  _ {p} $;
 +
 
 +
3) $  S _ {p} = S _ {q} $
 +
if and only if $  F ( S _ {p} ) = F ( S _ {q} ) $.
  
 
Under a projective transformation the sum and intersection of subspaces are preserved, points are mapped to points, and independence of points is preserved. The projective transformations constitute a group, called the projective group. Examples of projective transformations are: a [[Collineation|collineation]], a [[Perspective|perspective]] and a [[Homology|homology]].
 
Under a projective transformation the sum and intersection of subspaces are preserved, points are mapped to points, and independence of points is preserved. The projective transformations constitute a group, called the projective group. Examples of projective transformations are: a [[Collineation|collineation]], a [[Perspective|perspective]] and a [[Homology|homology]].
  
Let the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538012.png" /> be interpreted as the collection of subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538013.png" /> of the left vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538014.png" /> over a skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538015.png" />. A semi-linear transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538016.png" /> into itself is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538017.png" /> consisting of an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538018.png" /> of the additive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538019.png" /> and an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538020.png" /> of the skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538021.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538023.png" /> the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538024.png" /> holds. In particular, a semi-linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538025.png" /> is linear if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538026.png" />. A semi-linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538027.png" /> induces a projective transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538028.png" />. The converse assertion is the first fundamental theorem of projective geometry: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538029.png" />, then every projective transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538030.png" /> is induced by some semi-linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538031.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538032.png" />.
+
Let the space $  \Pi _ {n} $
 +
be interpreted as the collection of subspaces $  P _ {n} ( K ) $
 +
of the left vector space $  A _ {n+} 1 ( K ) $
 +
over a skew-field $  K $.  
 +
A semi-linear transformation of $  A _ {n+} 1 $
 +
into itself is a pair $  ( \overline{F}\; , \phi ) $
 +
consisting of an automorphism $  \overline{F}\; $
 +
of the additive group $  A _ {n+} 1 $
 +
and an automorphism $  \phi $
 +
of the skew-field $  K $
 +
such that for any $  a \in A _ {n+} 1 $
 +
and $  k \in K $
 +
the equality $  \overline{F}\; ( ka ) = \phi ( k ) \overline{F}\; ( a ) $
 +
holds. In particular, a semi-linear transformation $  ( \overline{F}\; , \phi ) $
 +
is linear if $  \phi ( k) \equiv k $.  
 +
A semi-linear transformation $  ( \overline{F}\; , \phi ) $
 +
induces a projective transformation $  F $.  
 +
The converse assertion is the first fundamental theorem of projective geometry: If $  n \geq  2 $,  
 +
then every projective transformation $  F $
 +
is induced by some semi-linear transformation $  ( \overline{F}\; , \phi ) $
 +
of the space $  A _ {n+} 1 ( K ) $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Baer,   "Linear algebra and projective geometry" , Acad. Press (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W.V.D. Hodge,   D. Pedoe,   "Methods of algebraic geometry" , '''1''' , Cambridge Univ. Press (1947)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Baer, "Linear algebra and projective geometry" , Acad. Press (1952) {{MR|0052795}} {{ZBL|0049.38103}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , '''1''' , Cambridge Univ. Press (1947) {{MR|0028055}} {{ZBL|0796.14002}} {{ZBL|0796.14003}} {{ZBL|0796.14001}} {{ZBL|0157.27502}} {{ZBL|0157.27501}} {{ZBL|0055.38705}} {{ZBL|0048.14502}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
A projective transformation can also be defined as a bijection of the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075380/p07538033.png" /> preserving collinearity in both directions.
+
A projective transformation can also be defined as a bijection of the points of $  \Pi _ {n} $
 +
preserving collinearity in both directions.
  
 
Other names used for a projective transformation are: projectivity, collineation. See also [[Collineation|Collineation]] for terminology.
 
Other names used for a projective transformation are: projectivity, collineation. See also [[Collineation|Collineation]] for terminology.

Latest revision as of 08:08, 6 June 2020


A one-to-one mapping $ F $ of a projective space $ \Pi _ {n} $ onto itself preserving the order relation in the partially ordered (by inclusion) set of all subspaces of $ \Pi _ {n} $, that is, a mapping of $ \Pi _ {n} $ onto itself such that:

1) if $ S _ {p} \subset S _ {q} $, then $ F ( S _ {p} ) \subset F ( S _ {q} ) $;

2) for every $ \widetilde{S} _ {p} $ there is an $ S _ {p} $ such that $ F ( S _ {p} ) = \widetilde{S} _ {p} $;

3) $ S _ {p} = S _ {q} $ if and only if $ F ( S _ {p} ) = F ( S _ {q} ) $.

Under a projective transformation the sum and intersection of subspaces are preserved, points are mapped to points, and independence of points is preserved. The projective transformations constitute a group, called the projective group. Examples of projective transformations are: a collineation, a perspective and a homology.

Let the space $ \Pi _ {n} $ be interpreted as the collection of subspaces $ P _ {n} ( K ) $ of the left vector space $ A _ {n+} 1 ( K ) $ over a skew-field $ K $. A semi-linear transformation of $ A _ {n+} 1 $ into itself is a pair $ ( \overline{F}\; , \phi ) $ consisting of an automorphism $ \overline{F}\; $ of the additive group $ A _ {n+} 1 $ and an automorphism $ \phi $ of the skew-field $ K $ such that for any $ a \in A _ {n+} 1 $ and $ k \in K $ the equality $ \overline{F}\; ( ka ) = \phi ( k ) \overline{F}\; ( a ) $ holds. In particular, a semi-linear transformation $ ( \overline{F}\; , \phi ) $ is linear if $ \phi ( k) \equiv k $. A semi-linear transformation $ ( \overline{F}\; , \phi ) $ induces a projective transformation $ F $. The converse assertion is the first fundamental theorem of projective geometry: If $ n \geq 2 $, then every projective transformation $ F $ is induced by some semi-linear transformation $ ( \overline{F}\; , \phi ) $ of the space $ A _ {n+} 1 ( K ) $.

References

[1] R. Baer, "Linear algebra and projective geometry" , Acad. Press (1952) MR0052795 Zbl 0049.38103
[2] W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , 1 , Cambridge Univ. Press (1947) MR0028055 Zbl 0796.14002 Zbl 0796.14003 Zbl 0796.14001 Zbl 0157.27502 Zbl 0157.27501 Zbl 0055.38705 Zbl 0048.14502

Comments

A projective transformation can also be defined as a bijection of the points of $ \Pi _ {n} $ preserving collinearity in both directions.

Other names used for a projective transformation are: projectivity, collineation. See also Collineation for terminology.

How to Cite This Entry:
Projective transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projective_transformation&oldid=12453
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article