Namespaces
Variants
Actions

Difference between revisions of "Privalov theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Privalov's theorem on conjugate functions: Let
+
<!--
 +
p0748601.png
 +
$#A+1 = 76 n = 0
 +
$#C+1 = 76 : ~/encyclopedia/old_files/data/P074/P.0704860 Privalov theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748601.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
be a continuous periodic function of period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748602.png" /> and let
+
== Privalov's theorem on conjugate functions ==
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748603.png" /></td> </tr></table>
+
Let
  
be the function trigonometrically conjugate to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748604.png" /> (cf. also [[Conjugate function|Conjugate function]]). Then if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748605.png" /> satisfies a Lipschitz condition of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748606.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748608.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p0748609.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486011.png" /> has modulus of continuity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486012.png" /> at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486013.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486014.png" />. This theorem, proved by I.I. Privalov , has important applications in the theory of trigonometric series. It can be transferred to Lipschitz conditions in certain other metrics (cf. e.g. ).
+
$$
 +
f ( t) = \
 +
{
 +
\frac{a _ {0} }{2}
 +
} +
 +
\sum _ {k = 1 } ^  \infty 
 +
( a _ {k}  \cos  kt + b _ {k}  \sin  kt)
 +
$$
  
Privalov's uniqueness theorem for analytic functions: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486015.png" /> be a single-valued analytic function in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486016.png" /> of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486017.png" />-plane bounded by a rectifiable Jordan curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486018.png" />. If on some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486019.png" /> of positive Lebesgue measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486021.png" /> has non-tangential boundary values (cf. [[Angular boundary value|Angular boundary value]]) zero, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486023.png" />. This theorem was proved by Privalov ; the Luzin–Privalov theorem (cf. [[Luzin–Privalov theorems|Luzin–Privalov theorems]]) is a generalization of it. See also [[Uniqueness properties of analytic functions|Uniqueness properties of analytic functions]].
+
be a continuous periodic function of period  $  2 \pi $
 +
and let
  
Privalov's theorem on the singular Cauchy integral, or Privalov's main lemma, is one of the basic results in the theory of integrals of Cauchy–Stieltjes type (cf. [[Cauchy integral|Cauchy integral]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486024.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486026.png" />, be a rectifiable (closed) Jordan curve in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486027.png" />-plane; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486028.png" /> be the length of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486029.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486030.png" /> be the arc length on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486031.png" /> reckoned from some fixed point; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486032.png" /> be the angle between the positive direction of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486033.png" />-axis and the tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486034.png" />; and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486035.png" /> be a complex-valued function of bounded variation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486036.png" />. Let a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486037.png" /> be defined by a value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486038.png" /> of the arc length, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486040.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486041.png" /> be the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486042.png" /> that remains when the shorter arc with end-points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486044.png" /> is removed from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486045.png" />. The limit
+
$$
 +
\widetilde{f}  ( t) = \
 +
{
 +
\frac{a _ {0} }{2}
 +
} +
 +
\sum _ {k = 1 } ^  \infty 
 +
( b _ {k}  \cos  kt - a _ {k}  \sin  kt)
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486046.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
be the function trigonometrically conjugate to  $  f $(
 +
cf. also [[Conjugate function|Conjugate function]]). Then if  $  f $
 +
satisfies a Lipschitz condition of order  $  \alpha $,
 +
$  f \in  \mathop{\rm Lip}  \alpha $,
 +
$  0 < \alpha \leq  1 $,
 +
then  $  \widetilde{f}  \in  \mathop{\rm Lip}  \alpha $
 +
for  $  0 < \alpha < 1 $
 +
and  $  \widetilde{f}  $
 +
has modulus of continuity  $  M( \delta , \widetilde{f}  ) = \sup  _ {| x _ {1}  - x _ {2} | \leq  \delta }  | f( x _ {1} ) - f ( x _ {2} ) | $
 +
at most  $  M \delta  \mathop{\rm ln} ( 1/ \delta ) $
 +
for  $  \alpha = 1 $.
 +
This theorem, proved by I.I. Privalov , has important applications in the theory of trigonometric series. It can be transferred to Lipschitz conditions in certain other metrics (cf. e.g. ).
  
if it exists and is finite, is called a Cauchy–Stieltjes singular integral. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486047.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486048.png" />) be the finite (infinite) domain bounded by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486049.png" />. A statement of Privalov's theorem is: If for almost-all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486050.png" />, with respect to the Lebesgue measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486051.png" />, the singular integral (1) exists, then almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486052.png" /> the non-tangential boundary values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486053.png" /> of the integral of Cauchy–Stieltjes type,
+
== Privalov's uniqueness theorem for analytic functions ==
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486054.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
Let  $  f ( z) $
 +
be a single-valued analytic function in a domain  $  D $
 +
of the complex  $  z $-
 +
plane bounded by a rectifiable Jordan curve  $  \Gamma $.  
 +
If on some set  $  E \subset  \Gamma $
 +
of positive Lebesgue measure on  $  \Gamma $,
 +
$  f ( z) $
 +
has non-tangential boundary values (cf. [[Angular boundary value|Angular boundary value]]) zero, then  $  f ( z) \equiv 0 $
 +
in  $  D $.  
 +
This theorem was proved by Privalov ; the Luzin–Privalov theorem (cf. [[Luzin–Privalov theorems|Luzin–Privalov theorems]]) is a generalization of it. See also [[Uniqueness properties of analytic functions|Uniqueness properties of analytic functions]].
  
exist, taken respectively from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486055.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486056.png" />, and almost-everywhere the [[Sokhotskii formulas|Sokhotskii formulas]]
+
== Privalov's theorem on the singular Cauchy integral ==
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486057.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
Privalov's theorem on the singular Cauchy integral, or Privalov's main lemma, is one of the basic results in the theory of integrals of Cauchy–Stieltjes type (cf. [[Cauchy integral|Cauchy integral]]). Let  $  \Gamma $:
 +
$  \zeta = \zeta ( s) $,
 +
$  0 \leq  s \leq  l $,
 +
be a rectifiable (closed) Jordan curve in the complex  $  z $-
 +
plane; let  $  l $
 +
be the length of  $  \Gamma $;
 +
let  $  s $
 +
be the arc length on  $  \Gamma $
 +
reckoned from some fixed point; let  $  \phi = \phi ( s) $
 +
be the angle between the positive direction of the  $  x $-
 +
axis and the tangent to  $  \Gamma $;  
 +
and let  $  \psi ( s) $
 +
be a complex-valued function of bounded variation on  $  \Gamma $.
 +
Let a point  $  \zeta _ {0} \in \Gamma $
 +
be defined by a value  $  s _ {0} $
 +
of the arc length,  $  \zeta _ {0} = \zeta ( s _ {0} ) $,
 +
$  0 \leq  s _ {0} \leq  l $,
 +
and let  $  \Gamma _  \delta  $
 +
be the part of  $  \Gamma $
 +
that remains when the shorter arc with end-points  $  \zeta ( s _ {0} - \delta ) $
 +
and  $  \zeta ( s _ {0} + \delta ) $
 +
is removed from  $  \Gamma $.
 +
The limit
  
hold. Conversely, if almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486058.png" /> the non-tangential boundary value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486059.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486060.png" />) of the integral (2) exists, then almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486061.png" /> the singular integral (1) and the boundary value from the other side, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486062.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486063.png" />) exist and relation (3) holds. This theorem was established by Privalov for integrals of Cauchy–Lebesgue type (i.e. in the case of an absolutely-continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486064.png" />, cf. ), and later in the general case . It plays a basic role in the theory of singular integral equations and discontinuous boundary problems of analytic function theory (cf. ).
+
$$ \tag{1 }
 +
\lim\limits _ {\delta \rightarrow 0 } \
 +
{
 +
\frac{1}{2 \pi i }
 +
}
 +
\int\limits _ {\Gamma _  \delta  }
  
Privalov's theorem on boundary values of integrals of Cauchy–Lebesgue type: If a Jordan curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486065.png" /> is piecewise smooth and without cusps and if a complex-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486067.png" />, satisfies a Lipschitz condition
+
\frac{e ^ {i \phi ( s) }  d \psi ( s) }{\zeta - \zeta _ {0} }
 +
  = \
 +
{
 +
\frac{1}{2 \pi i }
 +
}
 +
\int\limits _  \Gamma
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486068.png" /></td> </tr></table>
+
\frac{e ^ {i \phi ( s) }  d \psi ( s) }{\zeta - \zeta _ {0} }
 +
,
 +
$$
  
then the integral of Cauchy–Lebesgue type
+
if it exists and is finite, is called a Cauchy–Stieltjes singular integral. Let  $  D  ^ {+} $(
 +
respectively,  $  D  ^ {-} $)
 +
be the finite (infinite) domain bounded by  $  \Gamma $.
 +
A statement of Privalov's theorem is: If for almost-all points of  $  \Gamma $,
 +
with respect to the Lebesgue measure on  $  \Gamma $,
 +
the singular integral (1) exists, then almost-everywhere on  $  \Gamma $
 +
the non-tangential boundary values  $  F ^ { \pm  } ( \zeta _ {0} ) $
 +
of the integral of Cauchy–Stieltjes type,
 +
 
 +
$$ \tag{2 }
 +
F ( z)  = \
 +
{
 +
\frac{1}{2 \pi i }
 +
}
 +
\int\limits _  \Gamma
 +
 
 +
\frac{e ^ {i \phi ( s) }  d \psi ( s) }{\zeta - z }
 +
,\ \
 +
z \in D  ^  \pm  ,
 +
$$
 +
 
 +
exist, taken respectively from  $  D  ^ {+} $
 +
or  $  D  ^ {-} $,
 +
and almost-everywhere the [[Sokhotskii formulas|Sokhotskii formulas]]
 +
 
 +
$$ \tag{3 }
 +
F ^ { \pm  } ( \zeta _ {0} )  = \
 +
{
 +
\frac{1}{2 \pi i }
 +
}
 +
\int\limits _  \Gamma
 +
 
 +
\frac{e ^ {i \phi ( s) }  d \psi ( s) }{\zeta - \zeta _ {0} }
 +
\pm
 +
{
 +
\frac{1}{2}
 +
} \psi  ^  \prime  ( s _ {0} )
 +
$$
 +
 
 +
hold. Conversely, if almost-everywhere on  $  \Gamma $
 +
the non-tangential boundary value  $  F ^ { + } ( \zeta _ {0} ) $(
 +
or  $  F ^ { - } ( \zeta _ {0} ) $)
 +
of the integral (2) exists, then almost-everywhere on  $  \Gamma $
 +
the singular integral (1) and the boundary value from the other side,  $  F ^ { - } ( \zeta _ {0} ) $(
 +
respectively,  $  F ^ { + } ( \zeta _ {0} ) $)
 +
exist and relation (3) holds. This theorem was established by Privalov for integrals of Cauchy–Lebesgue type (i.e. in the case of an absolutely-continuous function  $  \psi ( s) $,
 +
cf. ), and later in the general case . It plays a basic role in the theory of singular integral equations and discontinuous boundary problems of analytic function theory (cf. ).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486069.png" /></td> </tr></table>
+
== Privalov's theorem on boundary values of integrals of Cauchy–Lebesgue type ==
  
is a continuous function in the closed domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486070.png" />. Moreover, the boundary values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486071.png" /> satisfy
+
If a Jordan curve  $  \Gamma $
 +
is piecewise smooth and without cusps and if a complex-valued function $  f ( \zeta ) $,
 +
$  \zeta \in \Gamma $,  
 +
satisfies a Lipschitz condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486072.png" /></td> </tr></table>
+
$$
 +
| f ( \zeta _ {1} ) - f ( \zeta _ {2} ) |  < \
 +
C  | \zeta _ {1} - \zeta _ {2} |  ^  \alpha  ,\ \
 +
0 < \alpha \leq  1,
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486073.png" />, and
+
then the integral of Cauchy–Lebesgue type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486074.png" /></td> </tr></table>
+
$$
 +
F ( z)  = \
 +
{
 +
\frac{1}{2 \pi i }
 +
}
 +
\int\limits _  \Gamma
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486076.png" /> (cf. [[#References|[2]]]).
+
\frac{f ( \zeta ) d \zeta }{\zeta - z }
 +
,\ \
 +
z \in D  ^  \pm  ,
 +
$$
  
====References====
+
is a continuous function in the closed domains $ D ^ \pm $.  
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.I. Privalov,  "Sur les fonctions conjuguées" ''Bull. Soc. Math. France'' , '''44''' (1916) pp. 100–103</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. Privalov,  "The Cauchy integral" , Saratov  (1918)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. Privalov,   "Boundary properties of single-valued analytic functions" , Moscow  (1941)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.V. Khvedelidze,  "The method of Cauchy-type integrals in the discontinuous boundary-value problems of the theory of holomorphic functions of a complex variable" ''J. Soviet Math.'' , '''7''' : 3 (1977) pp. 309–414  ''Itogi Nauk. i Tekhn. Sovrem. Probl. Mat.'' , '''7'''  (1975)  pp. 5–162</TD></TR></table>
+
Moreover, the boundary values $ F ^ { \pm } ( \zeta ) $
 +
satisfy
  
 +
$$
 +
| F ^ { \pm  } ( \zeta _ {1} ) - F ^ { \pm  } ( \zeta _ {2} ) |  < \
 +
C _ {1}  | \zeta _ {1} - \zeta _ {2} |  ^  \alpha
 +
$$
  
 +
for  $  0 < \alpha < 1 $,
 +
and
  
====Comments====
+
$$
 +
| F ^ { \pm  } ( \zeta _ {1} ) - F ^ { \pm  } ( \zeta _ {2} ) |  < \
 +
C _ {2} ( \delta )  | \zeta _ {1} - \zeta _ {2} |  \mathop{\rm ln} \
 +
{
 +
\frac{1}{| \zeta _ {1} - \zeta _ {2} | }
 +
}
 +
$$
  
 +
for  $  \alpha = 1 $,
 +
$  | \zeta _ {1} - \zeta _ {2} | \leq  \delta < 1 $(
 +
cf. [[#References|[2]]]).
  
====References====
+
==References==
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 9</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. Privalov,  "Sur les fonctions conjuguées"  ''Bull. Soc. Math. France'' , '''44'''  (1916)  pp. 100–103</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. Privalov,  "The Cauchy integral" , Saratov  (1918)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. Privalov,  "Boundary properties of single-valued analytic functions" , Moscow  (1941)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.V. Khvedelidze,  "The method of Cauchy-type integrals in the discontinuous boundary-value problems of the theory of holomorphic functions of a complex variable"  ''J. Soviet Math.'' , '''7''' :  3  (1977)  pp. 309–414  ''Itogi Nauk. i Tekhn. Sovrem. Probl. Mat.'' , '''7'''  (1975)  pp. 5–162</TD></TR><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 9</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


Privalov's theorem on conjugate functions

Let

$$ f ( t) = \ { \frac{a _ {0} }{2} } + \sum _ {k = 1 } ^ \infty ( a _ {k} \cos kt + b _ {k} \sin kt) $$

be a continuous periodic function of period $ 2 \pi $ and let

$$ \widetilde{f} ( t) = \ { \frac{a _ {0} }{2} } + \sum _ {k = 1 } ^ \infty ( b _ {k} \cos kt - a _ {k} \sin kt) $$

be the function trigonometrically conjugate to $ f $( cf. also Conjugate function). Then if $ f $ satisfies a Lipschitz condition of order $ \alpha $, $ f \in \mathop{\rm Lip} \alpha $, $ 0 < \alpha \leq 1 $, then $ \widetilde{f} \in \mathop{\rm Lip} \alpha $ for $ 0 < \alpha < 1 $ and $ \widetilde{f} $ has modulus of continuity $ M( \delta , \widetilde{f} ) = \sup _ {| x _ {1} - x _ {2} | \leq \delta } | f( x _ {1} ) - f ( x _ {2} ) | $ at most $ M \delta \mathop{\rm ln} ( 1/ \delta ) $ for $ \alpha = 1 $. This theorem, proved by I.I. Privalov , has important applications in the theory of trigonometric series. It can be transferred to Lipschitz conditions in certain other metrics (cf. e.g. ).

Privalov's uniqueness theorem for analytic functions

Let $ f ( z) $ be a single-valued analytic function in a domain $ D $ of the complex $ z $- plane bounded by a rectifiable Jordan curve $ \Gamma $. If on some set $ E \subset \Gamma $ of positive Lebesgue measure on $ \Gamma $, $ f ( z) $ has non-tangential boundary values (cf. Angular boundary value) zero, then $ f ( z) \equiv 0 $ in $ D $. This theorem was proved by Privalov ; the Luzin–Privalov theorem (cf. Luzin–Privalov theorems) is a generalization of it. See also Uniqueness properties of analytic functions.

Privalov's theorem on the singular Cauchy integral

Privalov's theorem on the singular Cauchy integral, or Privalov's main lemma, is one of the basic results in the theory of integrals of Cauchy–Stieltjes type (cf. Cauchy integral). Let $ \Gamma $: $ \zeta = \zeta ( s) $, $ 0 \leq s \leq l $, be a rectifiable (closed) Jordan curve in the complex $ z $- plane; let $ l $ be the length of $ \Gamma $; let $ s $ be the arc length on $ \Gamma $ reckoned from some fixed point; let $ \phi = \phi ( s) $ be the angle between the positive direction of the $ x $- axis and the tangent to $ \Gamma $; and let $ \psi ( s) $ be a complex-valued function of bounded variation on $ \Gamma $. Let a point $ \zeta _ {0} \in \Gamma $ be defined by a value $ s _ {0} $ of the arc length, $ \zeta _ {0} = \zeta ( s _ {0} ) $, $ 0 \leq s _ {0} \leq l $, and let $ \Gamma _ \delta $ be the part of $ \Gamma $ that remains when the shorter arc with end-points $ \zeta ( s _ {0} - \delta ) $ and $ \zeta ( s _ {0} + \delta ) $ is removed from $ \Gamma $. The limit

$$ \tag{1 } \lim\limits _ {\delta \rightarrow 0 } \ { \frac{1}{2 \pi i } } \int\limits _ {\Gamma _ \delta } \frac{e ^ {i \phi ( s) } d \psi ( s) }{\zeta - \zeta _ {0} } = \ { \frac{1}{2 \pi i } } \int\limits _ \Gamma \frac{e ^ {i \phi ( s) } d \psi ( s) }{\zeta - \zeta _ {0} } , $$

if it exists and is finite, is called a Cauchy–Stieltjes singular integral. Let $ D ^ {+} $( respectively, $ D ^ {-} $) be the finite (infinite) domain bounded by $ \Gamma $. A statement of Privalov's theorem is: If for almost-all points of $ \Gamma $, with respect to the Lebesgue measure on $ \Gamma $, the singular integral (1) exists, then almost-everywhere on $ \Gamma $ the non-tangential boundary values $ F ^ { \pm } ( \zeta _ {0} ) $ of the integral of Cauchy–Stieltjes type,

$$ \tag{2 } F ( z) = \ { \frac{1}{2 \pi i } } \int\limits _ \Gamma \frac{e ^ {i \phi ( s) } d \psi ( s) }{\zeta - z } ,\ \ z \in D ^ \pm , $$

exist, taken respectively from $ D ^ {+} $ or $ D ^ {-} $, and almost-everywhere the Sokhotskii formulas

$$ \tag{3 } F ^ { \pm } ( \zeta _ {0} ) = \ { \frac{1}{2 \pi i } } \int\limits _ \Gamma \frac{e ^ {i \phi ( s) } d \psi ( s) }{\zeta - \zeta _ {0} } \pm { \frac{1}{2} } \psi ^ \prime ( s _ {0} ) $$

hold. Conversely, if almost-everywhere on $ \Gamma $ the non-tangential boundary value $ F ^ { + } ( \zeta _ {0} ) $( or $ F ^ { - } ( \zeta _ {0} ) $) of the integral (2) exists, then almost-everywhere on $ \Gamma $ the singular integral (1) and the boundary value from the other side, $ F ^ { - } ( \zeta _ {0} ) $( respectively, $ F ^ { + } ( \zeta _ {0} ) $) exist and relation (3) holds. This theorem was established by Privalov for integrals of Cauchy–Lebesgue type (i.e. in the case of an absolutely-continuous function $ \psi ( s) $, cf. ), and later in the general case . It plays a basic role in the theory of singular integral equations and discontinuous boundary problems of analytic function theory (cf. ).

Privalov's theorem on boundary values of integrals of Cauchy–Lebesgue type

If a Jordan curve $ \Gamma $ is piecewise smooth and without cusps and if a complex-valued function $ f ( \zeta ) $, $ \zeta \in \Gamma $, satisfies a Lipschitz condition

$$ | f ( \zeta _ {1} ) - f ( \zeta _ {2} ) | < \ C | \zeta _ {1} - \zeta _ {2} | ^ \alpha ,\ \ 0 < \alpha \leq 1, $$

then the integral of Cauchy–Lebesgue type

$$ F ( z) = \ { \frac{1}{2 \pi i } } \int\limits _ \Gamma \frac{f ( \zeta ) d \zeta }{\zeta - z } ,\ \ z \in D ^ \pm , $$

is a continuous function in the closed domains $ D ^ \pm $. Moreover, the boundary values $ F ^ { \pm } ( \zeta ) $ satisfy

$$ | F ^ { \pm } ( \zeta _ {1} ) - F ^ { \pm } ( \zeta _ {2} ) | < \ C _ {1} | \zeta _ {1} - \zeta _ {2} | ^ \alpha $$

for $ 0 < \alpha < 1 $, and

$$ | F ^ { \pm } ( \zeta _ {1} ) - F ^ { \pm } ( \zeta _ {2} ) | < \ C _ {2} ( \delta ) | \zeta _ {1} - \zeta _ {2} | \mathop{\rm ln} \ { \frac{1}{| \zeta _ {1} - \zeta _ {2} | } } $$

for $ \alpha = 1 $, $ | \zeta _ {1} - \zeta _ {2} | \leq \delta < 1 $( cf. [2]).

References

[1] I.I. Privalov, "Sur les fonctions conjuguées" Bull. Soc. Math. France , 44 (1916) pp. 100–103
[2] I.I. Privalov, "The Cauchy integral" , Saratov (1918) (In Russian)
[3] I.I. Privalov, "Boundary properties of single-valued analytic functions" , Moscow (1941) (In Russian)
[4] I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)
[5] A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988)
[6] B.V. Khvedelidze, "The method of Cauchy-type integrals in the discontinuous boundary-value problems of the theory of holomorphic functions of a complex variable" J. Soviet Math. , 7 : 3 (1977) pp. 309–414 Itogi Nauk. i Tekhn. Sovrem. Probl. Mat. , 7 (1975) pp. 5–162
[a1] E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 9
How to Cite This Entry:
Privalov theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Privalov_theorem&oldid=17617
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article