Namespaces
Variants
Actions

Privalov operators

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Privalov parameters

Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. Harmonic function). Let $ u $ be a locally integrable function in a bounded domain $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; let $ \omega ( h) $ denote the volume of the ball $ B ( x; h) $ of radius $ h $ with centre $ x \in D $, lying in $ D $; and let

$$ \Delta _ {h} u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy - u ( x). $$

The upper and lower Privalov operators $ \overline \Delta \; {} ^ {*} u ( x) $ and $ \underline \Delta ^ {*} u ( x) $ are defined, respectively, by the formulas

$$ \overline \Delta \; {} ^ {*} u ( x) = \ \overline{\lim\limits}\; _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) , $$

$$ \underline \Delta ^ {*} u ( x) = \lim\limits _ {\overline{ {h \rightarrow 0 }}\; } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$

If the upper and lower Privalov operators coincide, then the Privalov operator $ \Delta ^ {*} u ( x) $ is defined by

$$ \Delta ^ {*} u ( x) = \ \overline \Delta \; {} ^ {*} u ( x) = \ \underline \Delta ^ {*} u ( x) = \ \lim\limits _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$

If the function $ u $ has continuous partial derivatives up to and including the second order at $ x \in D $, then the Privalov operator $ \Delta ^ {*} u( x) $ exists at $ x $ and is equal to the value of the Laplace operator: $ \Delta ^ {*} u ( x) = \Delta u ( x) $. Privalov's theorem says: If a function $ u $, continuous in a domain $ D $, satisfies everywhere in $ D $ the conditions

$$ \underline \Delta ^ {*} u ( x) \leq \ 0 \leq \overline \Delta \; {} ^ {*} u ( x), $$

then $ u $ is harmonic in $ D $. This implies that a function $ u $, continuous in $ D $, is harmonic if and only if at every point $ x \in D $ one has $ \Delta _ {h} u ( x) = 0 $, from some sufficiently small $ h $ onwards, or, in other words, if and only if

$$ u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy. $$

The average value over the volume of a sphere can be replaced by that over the surface area.

References

[1] I.I. Privalov, Mat. Sb. , 32 (1925) pp. 464–471
[2] I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian)
[3] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1969)

Comments

More generally, if $ u > - \infty $ is lower semi-continuous, then $ u $ is hyperharmonic if and only if $ \underline \Delta ^ {*} u \leq 0 $ on $ \{ u < \infty \} $( the theorem of Blaschke–Privalov).

Similar results hold if the average value over the surface area is used for the operators and $ 2( n+ 2) $ is replaced by $ 2n $.

How to Cite This Entry:
Privalov operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Privalov_operators&oldid=48295
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article