Namespaces
Variants
Actions

Difference between revisions of "Principal type, partial differential operator of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0747901.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/P074/P.0704790 Principal type, partial differential operator of,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''with constant coefficients''
 
''with constant coefficients''
  
An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747901.png" /> whose principal part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747902.png" /> (cf. [[Principal part of a differential operator|Principal part of a differential operator]]) satisfies the condition
+
An operator $  A( D) $
 +
whose principal part $  P( D) $(
 +
cf. [[Principal part of a differential operator|Principal part of a differential operator]]) satisfies the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\sum _ {j = 1 } ^ { n }  \left |
  
for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747904.png" />. Another formulation is: Any real hyperplane that is [[Characteristic|characteristic]] with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747905.png" /> must be a simple characteristic. Condition (*) is necessary and sufficient for the [[Domination|domination]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747906.png" /> by any operator of lower order. Operators with identical principal parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747907.png" /> are equally strong if and only if condition (*) is satisfied. If the coefficients are variable, the condition to the effect that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747908.png" /> is of principal type is usually formulated using special inequalities estimating the derivatives of functions with compact support by the values of the operator. If condition (*) holds pointwise, a supplementary condition regarding the order of the [[Commutator|commutator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p0747909.png" /> is sufficient to ensure that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479010.png" /> is in fact an operator of principal type.
+
\frac{\partial  P ( x) }{\partial  x _ {j} }
 +
\
 +
\right | ^ {2}  \neq  0
 +
$$
  
 +
for any vector  $  \mathbf x = ( x _ {1} \dots x _ {n} ) \in \mathbf R  ^ {n} $.
 +
Another formulation is: Any real hyperplane that is [[Characteristic|characteristic]] with respect to  $  P( D) $
 +
must be a simple characteristic. Condition (*) is necessary and sufficient for the [[Domination|domination]] of  $  A( D) $
 +
by any operator of lower order. Operators with identical principal parts  $  P( D) $
 +
are equally strong if and only if condition (*) is satisfied. If the coefficients are variable, the condition to the effect that  $  A( D) $
 +
is of principal type is usually formulated using special inequalities estimating the derivatives of functions with compact support by the values of the operator. If condition (*) holds pointwise, a supplementary condition regarding the order of the [[Commutator|commutator]]  $  [ P( x, D), \overline{P}\; ( x, D)] $
 +
is sufficient to ensure that  $  A( D) $
 +
is in fact an operator of principal type.
  
 +
====Comments====
 +
Let  $  A( D) $,
 +
$  B( D) $
 +
be constant-coefficient linear partial differential operators on  $  \mathbf R  ^ {n} $
 +
with principal parts  $  P( D) $,
 +
$  Q( D) $,
 +
respectively. Put  $  \widetilde{A}  ( \xi ) = \sum _ {| \alpha | \geq  0 }  | A ^ {( \alpha ) } ( \xi ) |  ^ {2} $(
 +
the sum is finite, since  $  A( \xi ) $
 +
is a polynomial), and similarly for  $  B ( \xi ) $.
 +
Then  $  A( D) $
 +
is said to be stronger than  $  B( D) $,
 +
written  $  B \prec A $,
 +
if
  
====Comments====
+
$$
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479012.png" /> be constant-coefficient linear partial differential operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479013.png" /> with principal parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479015.png" />, respectively. Put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479016.png" /> (the sum is finite, since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479017.png" /> is a polynomial), and similarly for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479018.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479019.png" /> is said to be stronger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479020.png" />, written <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479021.png" />, if
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479022.png" /></td> </tr></table>
+
\frac{\widetilde{B}  ( \xi ) }{\widetilde{A}  ( \xi ) }
 +
  < C ,\ \
 +
\xi \in \mathbf R  ^ {n} ,
 +
$$
  
for some constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479023.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479025.png" /> are said to be equally strong if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074790/p07479026.png" />.
+
for some constant $  C $.  
 +
$  A( D) $
 +
and $  B( D) $
 +
are said to be equally strong if $  B \prec A \prec B $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.V. Hörmander,  "The analysis of linear partial differential operators" , '''1''' , Springer  (1983)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.V. Hörmander,  "The analysis of linear partial differential operators" , '''1''' , Springer  (1983)</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


with constant coefficients

An operator $ A( D) $ whose principal part $ P( D) $( cf. Principal part of a differential operator) satisfies the condition

$$ \tag{* } \sum _ {j = 1 } ^ { n } \left | \frac{\partial P ( x) }{\partial x _ {j} } \ \right | ^ {2} \neq 0 $$

for any vector $ \mathbf x = ( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} $. Another formulation is: Any real hyperplane that is characteristic with respect to $ P( D) $ must be a simple characteristic. Condition (*) is necessary and sufficient for the domination of $ A( D) $ by any operator of lower order. Operators with identical principal parts $ P( D) $ are equally strong if and only if condition (*) is satisfied. If the coefficients are variable, the condition to the effect that $ A( D) $ is of principal type is usually formulated using special inequalities estimating the derivatives of functions with compact support by the values of the operator. If condition (*) holds pointwise, a supplementary condition regarding the order of the commutator $ [ P( x, D), \overline{P}\; ( x, D)] $ is sufficient to ensure that $ A( D) $ is in fact an operator of principal type.

Comments

Let $ A( D) $, $ B( D) $ be constant-coefficient linear partial differential operators on $ \mathbf R ^ {n} $ with principal parts $ P( D) $, $ Q( D) $, respectively. Put $ \widetilde{A} ( \xi ) = \sum _ {| \alpha | \geq 0 } | A ^ {( \alpha ) } ( \xi ) | ^ {2} $( the sum is finite, since $ A( \xi ) $ is a polynomial), and similarly for $ B ( \xi ) $. Then $ A( D) $ is said to be stronger than $ B( D) $, written $ B \prec A $, if

$$ \frac{\widetilde{B} ( \xi ) }{\widetilde{A} ( \xi ) } < C ,\ \ \xi \in \mathbf R ^ {n} , $$

for some constant $ C $. $ A( D) $ and $ B( D) $ are said to be equally strong if $ B \prec A \prec B $.

References

[a1] L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983)
How to Cite This Entry:
Principal type, partial differential operator of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Principal_type,_partial_differential_operator_of&oldid=15899
This article was adapted from an original article by A.A. Dezin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article