Namespaces
Variants
Actions

Difference between revisions of "Power function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(picture remake)
(asy code to subpage)
Line 14: Line 14:
  
 
c) The power function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420033.png" /> is an odd natural number, is defined for all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420034.png" />, and is negative when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420035.png" />. However, it is sometimes convenient to restrict in this case the power function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420036.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420037.png" />. The same statements apply for the power function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420038.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420039.png" /> is an irreducible fraction. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420041.png" />.
 
c) The power function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420033.png" /> is an odd natural number, is defined for all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420034.png" />, and is negative when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420035.png" />. However, it is sometimes convenient to restrict in this case the power function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420036.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420037.png" />. The same statements apply for the power function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420038.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420039.png" /> is an irreducible fraction. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420041.png" />.
 
+
{{:Power function/Fig1}}
<center><asy>
 
import graph;
 
picture whole;
 
 
 
real sc=0.8;
 
 
 
draw ( graph( new real(real x) {return x;}, -2, 2), red+1.2, "$y=x$" );
 
draw ( graph( new real(real x) {return 2x;}, -1, 1), blue+1.2, "$y=2x$" );
 
draw ( graph( new real(real x) {return x/2;}, -2, 2), green+1.2, "$y=x/2$" );
 
 
 
xaxis(-2.1,2.1, LeftTicks(Label(fontsize(8pt)),Step=1,step=0.2,Size=2,size=1,NoZero));
 
yaxis(-2,2, RightTicks(Label(fontsize(8pt)),Step=0.5,step=0.1,Size=2,size=1,NoZero));
 
labelx("$x$",(2.3,0.25));
 
labely("$y$",(0.15,2.3));
 
 
 
add(scale(0.72sc,1.2sc)*legend(),(0.5,-0.75));
 
 
 
real mrg=1.3;
 
draw( scale(mrg)*box((-2,-2),(2,2)), white );
 
 
 
add (whole,shift(-sc*230,0)*currentpicture.fit(sc*mrg*6.5cm));
 
erase();
 
 
 
 
 
draw ( graph( new real(real x) {return 1/x;}, -4, -0.25), red+1.2, "$y=1/x$" );
 
draw ( graph( new real(real x) {return 1/x;}, 0.25, 4), red+1.2 );
 
draw ( graph( new real(real x) {return 2/x;}, -4, -0.5), blue+1.2, "$y=2/x$" );
 
draw ( graph( new real(real x) {return 2/x;}, 0.5, 4), blue+1.2 );
 
draw ( graph( new real(real x) {return 1/(2x);}, -4, -0.125), green+1.2, "$y=1/(2x)$" );
 
draw ( graph( new real(real x) {return 1/(2x);}, 0.125, 4), green+1.2 );
 
 
 
xaxis(-4.2,4.2, LeftTicks(Label(fontsize(8pt)),Step=2,step=0.5,Size=2,size=1,NoZero));
 
yaxis(-4,4, RightTicks(Label(fontsize(8pt)),Step=1,step=0.2,Size=2,size=1,NoZero));
 
labelx("$x$",(4.6,0.5));
 
labely("$y$",(0.3,4.6));
 
 
 
add(scale(0.75sc,0.75sc)*legend(),(0.95,-1.2));
 
 
 
real mrg=1.3;
 
draw( scale(mrg)*box((-4,-4),(4,4)), white );
 
 
 
add (whole,shift(0,0)*currentpicture.fit(sc*mrg*6.5cm,mrg*6.5cm,false));
 
erase();
 
 
 
 
 
draw ( graph( new real(real x) {return x^3;}, -4^(1/3), 4^(1/3)), red+1.2, "$y=x^3$" );
 
draw ( graph( new real(real x) {return x^2;}, -2, 2), blue+1.2, "$y=x^2$" );
 
draw ( graph( new real(real x) {return sqrt(x);}, 0, 4), green+1.2, "$y=x^{1/2}$" );
 
draw ( graph( new real(real x) {return -sqrt(x);}, 0, 4), green+1.2 );
 
 
 
xaxis(-4.2,4.2, LeftTicks(Label(fontsize(8pt)),Step=2,step=0.5,Size=2,size=1,NoZero));
 
yaxis(-4,4, RightTicks(Label(fontsize(8pt)),Step=1,step=0.2,Size=2,size=1,NoZero));
 
labelx("$x$",(4.6,0.5));
 
labely("$y$",(0.3,4.6));
 
 
 
add(scale(0.5sc,0.75sc)*legend(),(0.6,-2.5));
 
 
 
real mrg=1.3;
 
draw( scale(mrg)*box((-4,-4),(4,4)), white );
 
 
 
add (whole,shift(sc*230,0)*currentpicture.fit(sc*mrg*6.5cm,mrg*6.5cm,false));
 
erase();
 
 
 
shipout(whole);
 
</asy></center>
 
  
 
The properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420042.png" /> are usually considered when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420044.png" /> is real, although many of them also hold when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420045.png" /> and, for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420046.png" /> is a natural number.
 
The properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420042.png" /> are usually considered when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420044.png" /> is real, although many of them also hold when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420045.png" /> and, for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074200/p07420046.png" /> is a natural number.

Revision as of 11:56, 13 December 2014

A function with

where is a constant number. If is an integer, the power function is a particular case of a rational function. When and have complex values, the power function is not single valued if is not an integer.

For fixed real and , the number is a power, and the properties of therefore follow from the properties of the power.

When , the power function is defined and positive for any real . When , the power function is defined in the following cases.

a) When , the power function is defined to equal 0 if , and is not defined if . The power function is defined to equal 1 for all ; in particular, .

b) If is a natural number, then the power function is defined for all , and the power function is defined for all . Here and if .

c) The power function , where is an odd natural number, is defined for all real , and is negative when . However, it is sometimes convenient to restrict in this case the power function to . The same statements apply for the power function , when is an irreducible fraction. Here and .

The properties of are usually considered when and is real, although many of them also hold when and, for example, is a natural number.

Functions of the form , where is a constant coefficient and , express a direct proportionality (their graphs are straight lines passing through the origin of the coordinates (Fig.a)), while when , they express an inverse proportionality (their graphs are equilateral hyperbolas with their centre at the origin of the coordinates and having the coordinate axes as their asymptotes (Fig.b)). Many laws of physics can be mathematically expressed by using functions of the form (Fig.c).

When , the power function is continuous, monotone (increasing when , decreasing when ), infinitely differentiable, and, in a neighbourhood of every positive , can be expanded into a Taylor series. Moreover,

when , where are the binomial coefficients.

In the complex domain, the power function is defined for all by the formula

(*)

where . If is an integer, then is single valued:

If is rational (, where and are relatively prime), then the power function takes different values:

where are the -th roots of unity: and . If is irrational, then has an infinite number of values: the factor takes different values for different . For non-real complex values of , the power function is defined by the same formula (*).


Comments

Also regarding formula (*), the symbol is an abbreviation for the value of the exponential function exp at the complex number . This function is defined by the series

which converges (absolutely) at each complex . Note that if .

Taking and in (*) one obtains the principal value. An interesting example is obtained if :

References

[a1] K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981) pp. 318ff
[a2] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
[a3] J. Marsden, "Basic complex analysis" , Freeman (1973)
How to Cite This Entry:
Power function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power_function&oldid=35618
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article