# Difference between revisions of "Pole (of a function)"

(TeX) |
(TeX) |
||

Line 6: | Line 6: | ||

An isolated [[Singular point|singular point]] $a$ of single-valued character of an analytic function $f(z)$ of the complex variable $z$ for which $\abs{f(z)}$ increases without bound when $z$ approaches $a$: $\lim_{z\rightarrow a} f(z) = \infty$. In a sufficiently small punctured neighbourhood $V=\set{z\in\C : 0 < \abs{z-a} < R}$ of the point $a \neq \infty$, or $V'=\set{z\in\C : r < \abs{z} < \infty}$ in the case of the point at infinity $a=\infty$, the function $f(z)$ can be written as a [[Laurent series]] of special form: | An isolated [[Singular point|singular point]] $a$ of single-valued character of an analytic function $f(z)$ of the complex variable $z$ for which $\abs{f(z)}$ increases without bound when $z$ approaches $a$: $\lim_{z\rightarrow a} f(z) = \infty$. In a sufficiently small punctured neighbourhood $V=\set{z\in\C : 0 < \abs{z-a} < R}$ of the point $a \neq \infty$, or $V'=\set{z\in\C : r < \abs{z} < \infty}$ in the case of the point at infinity $a=\infty$, the function $f(z)$ can be written as a [[Laurent series]] of special form: | ||

\begin{equation} | \begin{equation} | ||

− | \ | + | \label{eq1} |

f(z) = \sum_{k=-m}^\infty c_k (z-a)^k,\quad | f(z) = \sum_{k=-m}^\infty c_k (z-a)^k,\quad | ||

\text{$a \neq \infty$, $c_{-m} \neq 0$, $z \in V$}, | \text{$a \neq \infty$, $c_{-m} \neq 0$, $z \in V$}, | ||

Line 12: | Line 12: | ||

or, respectively, | or, respectively, | ||

\begin{equation} | \begin{equation} | ||

− | \ | + | \label{eq2} |

f(z) = \sum_{k=-m}^\infty \frac{c_k}{z^k},\quad | f(z) = \sum_{k=-m}^\infty \frac{c_k}{z^k},\quad | ||

\text{$a = \infty$, $c_{-m} \neq 0$, $z \in V'$}, | \text{$a = \infty$, $c_{-m} \neq 0$, $z \in V'$}, | ||

Line 18: | Line 18: | ||

with finitely many negative exponents if $a\neq\infty$, or, respectively, finitely many positive exponents if $a=\infty$. The natural number $m$ in these expressions is called the order, or multiplicity, of the pole $a$; when $m=1$ the pole is called simple. The expressions \ref{eq1} and \ref{eq2} show that the function $p(z)=(z-a)^mf (z)$ if $a\neq\infty$, or $p(z)=z^{-m}f(z)$ if $a=\infty$, can be [[Analytic continuation|analytically continued]] to a full neighbourhood of the pole $a$, and, moreover, $p(a) \neq 0$. Alternatively, a pole $a$ of order $m$ can also be characterized by the fact that the function $1/f(z)$ has a zero of multiplicity $m$ at $a$. | with finitely many negative exponents if $a\neq\infty$, or, respectively, finitely many positive exponents if $a=\infty$. The natural number $m$ in these expressions is called the order, or multiplicity, of the pole $a$; when $m=1$ the pole is called simple. The expressions \ref{eq1} and \ref{eq2} show that the function $p(z)=(z-a)^mf (z)$ if $a\neq\infty$, or $p(z)=z^{-m}f(z)$ if $a=\infty$, can be [[Analytic continuation|analytically continued]] to a full neighbourhood of the pole $a$, and, moreover, $p(a) \neq 0$. Alternatively, a pole $a$ of order $m$ can also be characterized by the fact that the function $1/f(z)$ has a zero of multiplicity $m$ at $a$. | ||

− | A point $a=(a_1,\ldots,a_n)$ of the complex space $\C^n$, $n\geq2$, is called a pole of the analytic function $f(z)$ of several complex variables $z=(z_1,\ldots,z_n)$ if the following conditions are satisfied: 1) $f(z)$ is holomorphic everywhere in some neighbourhood $U$ of $a$ except at a set $P \subset U$, $a \in P$; 2) $f(z)$ cannot be analytically continued to any point of $P$; and 3) there exists a function $q(z) \ | + | A point $a=(a_1,\ldots,a_n)$ of the complex space $\C^n$, $n\geq2$, is called a pole of the analytic function $f(z)$ of several complex variables $z=(z_1,\ldots,z_n)$ if the following conditions are satisfied: 1) $f(z)$ is holomorphic everywhere in some neighbourhood $U$ of $a$ except at a set $P \subset U$, $a \in P$; 2) $f(z)$ cannot be analytically continued to any point of $P$; and 3) there exists a function $q(z) \not\equiv 0$, holomorphic in $U$, such that the function $p(z) = q(z)f(z)$, which is holomorphic in $U \setminus P$, can be holomorphically continued to the full neighbourhood $U$, and, moreover, $p(a) \neq 0$. Here also |

$$ | $$ | ||

\lim_{z\rightarrow a}f(z) = | \lim_{z\rightarrow a}f(z) = |

## Revision as of 23:52, 29 April 2012

$ \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\set}[1]{\left\{ #1 \right\}} $

An isolated singular point $a$ of single-valued character of an analytic function $f(z)$ of the complex variable $z$ for which $\abs{f(z)}$ increases without bound when $z$ approaches $a$: $\lim_{z\rightarrow a} f(z) = \infty$. In a sufficiently small punctured neighbourhood $V=\set{z\in\C : 0 < \abs{z-a} < R}$ of the point $a \neq \infty$, or $V'=\set{z\in\C : r < \abs{z} < \infty}$ in the case of the point at infinity $a=\infty$, the function $f(z)$ can be written as a Laurent series of special form: \begin{equation} \label{eq1} f(z) = \sum_{k=-m}^\infty c_k (z-a)^k,\quad \text{'"`UNIQ-MathJax15-QINU`"', '"`UNIQ-MathJax16-QINU`"', '"`UNIQ-MathJax17-QINU`"'}, \end{equation} or, respectively, \begin{equation} \label{eq2} f(z) = \sum_{k=-m}^\infty \frac{c_k}{z^k},\quad \text{'"`UNIQ-MathJax18-QINU`"', '"`UNIQ-MathJax19-QINU`"', '"`UNIQ-MathJax20-QINU`"'}, \end{equation} with finitely many negative exponents if $a\neq\infty$, or, respectively, finitely many positive exponents if $a=\infty$. The natural number $m$ in these expressions is called the order, or multiplicity, of the pole $a$; when $m=1$ the pole is called simple. The expressions \ref{eq1} and \ref{eq2} show that the function $p(z)=(z-a)^mf (z)$ if $a\neq\infty$, or $p(z)=z^{-m}f(z)$ if $a=\infty$, can be analytically continued to a full neighbourhood of the pole $a$, and, moreover, $p(a) \neq 0$. Alternatively, a pole $a$ of order $m$ can also be characterized by the fact that the function $1/f(z)$ has a zero of multiplicity $m$ at $a$.

A point $a=(a_1,\ldots,a_n)$ of the complex space $\C^n$, $n\geq2$, is called a pole of the analytic function $f(z)$ of several complex variables $z=(z_1,\ldots,z_n)$ if the following conditions are satisfied: 1) $f(z)$ is holomorphic everywhere in some neighbourhood $U$ of $a$ except at a set $P \subset U$, $a \in P$; 2) $f(z)$ cannot be analytically continued to any point of $P$; and 3) there exists a function $q(z) \not\equiv 0$, holomorphic in $U$, such that the function $p(z) = q(z)f(z)$, which is holomorphic in $U \setminus P$, can be holomorphically continued to the full neighbourhood $U$, and, moreover, $p(a) \neq 0$. Here also $$ \lim_{z\rightarrow a}f(z) = \lim_{z\rightarrow a}\frac{p(z)}{q(z)} = \infty; $$ however, for $n \geq 2$, poles, as with singular points in general, cannot be isolated.

#### References

[1] | B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian) |

#### Comments

For $n=1$ see [a1]. For $n \geq 2$ see [a2], [a3].

For the use of poles in the representation of analytic functions see Integral representation of an analytic function; Cauchy integral.

#### References

[a1] | L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. Chapt. 8 |

[a2] | H. Grauert, K. Fritzsche, "Several complex variables" , Springer (1976) (Translated from German) |

[a3] | R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 1, Sect. 3 |

**How to Cite This Entry:**

Pole (of a function).

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=Pole_(of_a_function)&oldid=25727