Namespaces
Variants
Actions

Difference between revisions of "Pole (of a function)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(MSC)
Line 1: Line 1:
 +
{{MSC|}}
 +
{{TEX|done}}
 
$
 
$
 
\newcommand{\abs}[1]{\left| #1 \right|}
 
\newcommand{\abs}[1]{\left| #1 \right|}
 
\newcommand{\set}[1]{\left\{ #1 \right\}}
 
\newcommand{\set}[1]{\left\{ #1 \right\}}
 
$
 
$
 +
  
 
An isolated [[Singular point|singular point]] $a$ of single-valued character of an analytic function $f(z)$ of the complex variable $z$ for which $\abs{f(z)}$ increases without bound when $z$ approaches $a$: $\lim_{z\rightarrow a} f(z) = \infty$. In a sufficiently small punctured neighbourhood $V=\set{z\in\C : 0 < \abs{z-a} < R}$ of the point $a \neq \infty$, or $V'=\set{z\in\C : r < \abs{z} < \infty}$ in the case of the point at infinity $a=\infty$, the function $f(z)$ can be written as a [[Laurent series]] of special form:
 
An isolated [[Singular point|singular point]] $a$ of single-valued character of an analytic function $f(z)$ of the complex variable $z$ for which $\abs{f(z)}$ increases without bound when $z$ approaches $a$: $\lim_{z\rightarrow a} f(z) = \infty$. In a sufficiently small punctured neighbourhood $V=\set{z\in\C : 0 < \abs{z-a} < R}$ of the point $a \neq \infty$, or $V'=\set{z\in\C : r < \abs{z} < \infty}$ in the case of the point at infinity $a=\infty$, the function $f(z)$ can be written as a [[Laurent series]] of special form:
Line 27: Line 30:
 
====References====  
 
====References====  
  
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Sh}}||valign="top"| B.V. Shabat, "Introduction of complex analysis", '''2''', Moscow (1976) (In Russian)
 +
|-
 +
|}
 +
 
  
 
====Comments====  
 
====Comments====  
  
For $n=1$ see [[#References|[a1]]]. For $n \geq 2$ see [[#References|[a2]]], [[#References|[a3]]].
+
For $n=1$ see {{Cite|Ah}}. For $n \geq 2$ see {{Cite|GrFr}}, {{Cite|Ra}}.
  
 
For the use of poles in the representation of analytic functions see [[Integral representation of an analytic function]]; [[Cauchy integral]].
 
For the use of poles in the representation of analytic functions see [[Integral representation of an analytic function]]; [[Cauchy integral]].
Line 37: Line 45:
 
====References====  
 
====References====  
  
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. Chapt.  8</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.  Grauert, K. Fritzsche, "Several complex variables" , Springer (1976) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 1, Sect. 3</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Ah}}||valign="top"| L.V. Ahlfors, "Complex analysis", McGraw-Hill (1979) pp. Chapt.  8
 +
|-
 +
|valign="top"|{{Ref|GrFr}}||valign="top"| H.  Grauert, K. Fritzsche, "Several complex variables", Springer (1976) (Translated from German)
 +
|-
 +
|valign="top"|{{Ref|Ra}}||valign="top"| R.M. Range, "Holomorphic functions and integral representation in several complex variables", Springer (1986) pp. Chapt. 1, Sect. 3
 +
|-
 +
|}

Revision as of 23:55, 29 April 2012

$ \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\set}[1]{\left\{ #1 \right\}} $


An isolated singular point $a$ of single-valued character of an analytic function $f(z)$ of the complex variable $z$ for which $\abs{f(z)}$ increases without bound when $z$ approaches $a$: $\lim_{z\rightarrow a} f(z) = \infty$. In a sufficiently small punctured neighbourhood $V=\set{z\in\C : 0 < \abs{z-a} < R}$ of the point $a \neq \infty$, or $V'=\set{z\in\C : r < \abs{z} < \infty}$ in the case of the point at infinity $a=\infty$, the function $f(z)$ can be written as a Laurent series of special form: \begin{equation} \label{eq1} f(z) = \sum_{k=-m}^\infty c_k (z-a)^k,\quad \text{'"`UNIQ-MathJax15-QINU`"', '"`UNIQ-MathJax16-QINU`"', '"`UNIQ-MathJax17-QINU`"'}, \end{equation} or, respectively, \begin{equation} \label{eq2} f(z) = \sum_{k=-m}^\infty \frac{c_k}{z^k},\quad \text{'"`UNIQ-MathJax18-QINU`"', '"`UNIQ-MathJax19-QINU`"', '"`UNIQ-MathJax20-QINU`"'}, \end{equation} with finitely many negative exponents if $a\neq\infty$, or, respectively, finitely many positive exponents if $a=\infty$. The natural number $m$ in these expressions is called the order, or multiplicity, of the pole $a$; when $m=1$ the pole is called simple. The expressions \ref{eq1} and \ref{eq2} show that the function $p(z)=(z-a)^mf (z)$ if $a\neq\infty$, or $p(z)=z^{-m}f(z)$ if $a=\infty$, can be analytically continued to a full neighbourhood of the pole $a$, and, moreover, $p(a) \neq 0$. Alternatively, a pole $a$ of order $m$ can also be characterized by the fact that the function $1/f(z)$ has a zero of multiplicity $m$ at $a$.

A point $a=(a_1,\ldots,a_n)$ of the complex space $\C^n$, $n\geq2$, is called a pole of the analytic function $f(z)$ of several complex variables $z=(z_1,\ldots,z_n)$ if the following conditions are satisfied: 1) $f(z)$ is holomorphic everywhere in some neighbourhood $U$ of $a$ except at a set $P \subset U$, $a \in P$; 2) $f(z)$ cannot be analytically continued to any point of $P$; and 3) there exists a function $q(z) \not\equiv 0$, holomorphic in $U$, such that the function $p(z) = q(z)f(z)$, which is holomorphic in $U \setminus P$, can be holomorphically continued to the full neighbourhood $U$, and, moreover, $p(a) \neq 0$. Here also $$ \lim_{z\rightarrow a}f(z) = \lim_{z\rightarrow a}\frac{p(z)}{q(z)} = \infty; $$ however, for $n \geq 2$, poles, as with singular points in general, cannot be isolated.

References

[Sh] B.V. Shabat, "Introduction of complex analysis", 2, Moscow (1976) (In Russian)


Comments

For $n=1$ see [Ah]. For $n \geq 2$ see [GrFr], [Ra].

For the use of poles in the representation of analytic functions see Integral representation of an analytic function; Cauchy integral.

References

[Ah] L.V. Ahlfors, "Complex analysis", McGraw-Hill (1979) pp. Chapt. 8
[GrFr] H. Grauert, K. Fritzsche, "Several complex variables", Springer (1976) (Translated from German)
[Ra] R.M. Range, "Holomorphic functions and integral representation in several complex variables", Springer (1986) pp. Chapt. 1, Sect. 3
How to Cite This Entry:
Pole (of a function). Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Pole_(of_a_function)&oldid=25727
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article