Namespaces
Variants
Actions

Difference between revisions of "Poisson stability"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (→‎References: zbl link)
Line 45: Line 45:
  
 
There are still more general formulations of the theorems of Poincaré and E. Hopf (cf. [[#References|[2]]]).
 
There are still more general formulations of the theorems of Poincaré and E. Hopf (cf. [[#References|[2]]]).
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''3''' , Gauthier-Villars  (1899)  pp. Chapt. 26</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.C. Oxtoby,  "Measure and category" , Springer  (1971)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
Line 53: Line 50:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W.H. Gottschalk,  G.A. Hedlund,  "Topological dynamics" , Amer. Math. Soc.  (1955)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''3''' , Gauthier-Villars  (1899)  pp. Chapt. 26</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  J.C. Oxtoby,  "Measure and category" , Springer  (1971)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W.H. Gottschalk,  G.A. Hedlund,  "Topological dynamics" , Amer. Math. Soc.  (1955) {{ZBL|0067.15204}}</TD></TR>
 +
</table>

Revision as of 19:42, 21 March 2023


The property of a point $ x $( a trajectory $ f ^ { t } x $) of a dynamical system $ f ^ { t } $( or $ f ( t , \cdot ) $, cf. [2]), given in a topological space $ S $, consisting in the following: There are sequences $ t _ {k} \rightarrow + \infty $, $ \tau _ {k} \rightarrow - \infty $ such that

$$ \lim\limits _ {k \rightarrow \infty } f ^ { t _ {k} } x = \ \lim\limits _ {k \rightarrow \infty } f ^ { \tau _ {k} } x = x . $$

In other words, $ x $ is an $ \alpha $- and $ \omega $- limit point (cf. Limit point of a trajectory) of the trajectory $ f ^ { t } x $. The concept of Poisson stability was introduced by H. Poincaré [1] on the basis of an analysis of results of Poisson on the stability of planetary orbits.

Every Poisson-stable point is non-wandering; the converse is not true (cf. Wandering point). Every fixed and every periodic point, more generally, every recurrent point, is Poisson stable. If $ S = \mathbf R ^ {2} $ and the dynamical system is smooth (i.e. given by a vector field of class $ C ^ {1} $), then every Poisson-stable point is either fixed or periodic (cf. Poincaré–Bendixson theory).

Poincaré's recurrence theorem (cf. Poincaré return theorem): If a dynamical system is given in a bounded domain of $ \mathbf R ^ {n} $ and if Lebesgue measure is an invariant measure of the system, then all points are Poisson stable, with the exception of a certain set of the first category of measure zero (cf. [1], [3]). A generalization of this theorem to dynamical systems given on a space of infinite measure is the Hopf recurrence theorem (cf. [2]): If a dynamical system is given on an arbitrary domain in $ \mathbf R ^ {n} $( e.g. on $ \mathbf R ^ {n} $ itself) and if Lebesgue measure is an invariant measure of the system, then every point, with the exception of the points of a certain set of measure zero, is either Poisson stable or divergent, i.e.

$$ | f ^ { t } x | \rightarrow \infty \ \textrm{ as } | t | \rightarrow \infty . $$

There are still more general formulations of the theorems of Poincaré and E. Hopf (cf. [2]).

Comments

In Western literature on (abstract) topological dynamics (as opposed to the qualitative theory of differential equations) often the term "recurrent" is used for Poisson stability; see [a1]. For further comments, see Recurrent point.

References

[1] H. Poincaré, "Les méthodes nouvelles de la mécanique céleste" , 3 , Gauthier-Villars (1899) pp. Chapt. 26
[2] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)
[3] J.C. Oxtoby, "Measure and category" , Springer (1971)
[a1] W.H. Gottschalk, G.A. Hedlund, "Topological dynamics" , Amer. Math. Soc. (1955) Zbl 0067.15204
How to Cite This Entry:
Poisson stability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_stability&oldid=48221
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article