Namespaces
Variants
Actions

Difference between revisions of "Poisson stability"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: + ZBL link)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The property of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733501.png" /> (a trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733502.png" />) of a [[Dynamical system|dynamical system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733503.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733504.png" />, cf. [[#References|[2]]]), given in a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733505.png" />, consisting in the following: There are sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733506.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733507.png" /> such that
+
<!--
 +
p0733501.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/P073/P.0703350 Poisson stability
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733508.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p0733509.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335010.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335011.png" />-limit point (cf. [[Limit point of a trajectory|Limit point of a trajectory]]) of the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335012.png" />. The concept of Poisson stability was introduced by H. Poincaré [[#References|[1]]] on the basis of an analysis of results of Poisson on the stability of planetary orbits.
+
The property of a point $  x $(
 +
a trajectory $  f ^ { t } x $)
 +
of a [[Dynamical system|dynamical system]] $  f ^ { t } $(
 +
or  $  f ( t , \cdot ) $,
 +
cf. [[#References|[2]]]), given in a topological space  $  S $,
 +
consisting in the following: There are sequences  $  t _ {k} \rightarrow + \infty $,
 +
$  \tau _ {k} \rightarrow - \infty $
 +
such that
  
Every Poisson-stable point is non-wandering; the converse is not true (cf. [[Wandering point|Wandering point]]). Every fixed and every periodic point, more generally, every [[Recurrent point|recurrent point]], is Poisson stable. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335013.png" /> and the dynamical system is smooth (i.e. given by a vector field of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335014.png" />), then every Poisson-stable point is either fixed or periodic (cf. [[Poincaré–Bendixson theory|Poincaré–Bendixson theory]]).
+
$$
 +
\lim\limits _ {k \rightarrow \infty }  f ^ { t _ {k} } x  = \
 +
\lim\limits _ {k \rightarrow \infty }  f ^ { \tau _ {k} } x  = x .
 +
$$
  
Poincaré's recurrence theorem (cf. [[Poincaré return theorem|Poincaré return theorem]]): If a dynamical system is given in a bounded domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335015.png" /> and if Lebesgue measure is an [[Invariant measure|invariant measure]] of the system, then all points are Poisson stable, with the exception of a certain set of the first category of measure zero (cf. [[#References|[1]]], [[#References|[3]]]). A generalization of this theorem to dynamical systems given on a space of infinite measure is the Hopf recurrence theorem (cf. [[#References|[2]]]): If a dynamical system is given on an arbitrary domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335016.png" /> (e.g. on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335017.png" /> itself) and if Lebesgue measure is an invariant measure of the system, then every point, with the exception of the points of a certain set of measure zero, is either Poisson stable or divergent, i.e.
+
In other words,  $  x $
 +
is an  $  \alpha $-
 +
and  $  \omega $-
 +
limit point (cf. [[Limit point of a trajectory|Limit point of a trajectory]]) of the trajectory  $  f ^ { t } x $.  
 +
The concept of Poisson stability was introduced by H. Poincaré [[#References|[1]]] on the basis of an analysis of results of Poisson on the stability of planetary orbits.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073350/p07335018.png" /></td> </tr></table>
+
Every Poisson-stable point is non-wandering; the converse is not true (cf. [[Wandering point|Wandering point]]). Every fixed and every periodic point, more generally, every [[Recurrent point|recurrent point]], is Poisson stable. If  $  S = \mathbf R  ^ {2} $
 +
and the dynamical system is smooth (i.e. given by a vector field of class  $  C  ^ {1} $),
 +
then every Poisson-stable point is either fixed or periodic (cf. [[Poincaré–Bendixson theory|Poincaré–Bendixson theory]]).
  
There are still more general formulations of the theorems of Poincaré and E. Hopf (cf. [[#References|[2]]]).
+
Poincaré's recurrence theorem (cf. [[Poincaré return theorem|Poincaré return theorem]]): If a dynamical system is given in a bounded domain of  $  \mathbf R  ^ {n} $
 
+
and if Lebesgue measure is an [[Invariant measure|invariant measure]] of the system, then all points are Poisson stable, with the exception of a certain set of the first category of measure zero (cf. [[#References|[1]]], [[#References|[3]]]). A generalization of this theorem to dynamical systems given on a space of infinite measure is the Hopf recurrence theorem (cf. [[#References|[2]]]): If a dynamical system is given on an arbitrary domain in $  \mathbf R  ^ {n} $(
====References====
+
e.g. on  $  \mathbf R  ^ {n} $
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Les méthodes nouvelles de la mécanique céleste" , '''3''' , Gauthier-Villars  (1899)  pp. Chapt. 26</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Nemytskii,   V.V. Stepanov,   "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.C. Oxtoby,  "Measure and category" , Springer  (1971)</TD></TR></table>
+
itself) and if Lebesgue measure is an invariant measure of the system, then every point, with the exception of the points of a certain set of measure zero, is either Poisson stable or divergent, i.e.
  
 +
$$
 +
| f ^ { t } x |  \rightarrow  \infty \  \textrm{ as }  | t | \rightarrow \infty .
 +
$$
  
 +
There are still more general formulations of the theorems of Poincaré and E. Hopf (cf. [[#References|[2]]]).
  
 
====Comments====
 
====Comments====
Line 22: Line 50:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W.H. Gottschalk,   G.A. Hedlund,   "Topological dynamics" , Amer. Math. Soc.  (1955)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> H. Poincaré, "Les méthodes nouvelles de la mécanique céleste", '''3''' , Gauthier-Villars  (1899)  pp. Chapt. 26 {{ZBL|30.0834.08}}</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Nemytskii, V.V. Stepanov,  "Qualitative theory of differential equations", Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> J.C. Oxtoby, "Measure and category", Springer  (1971) {{ZBL|0217.09201}}</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> W.H. Gottschalk, G.A. Hedlund, "Topological dynamics", Amer. Math. Soc.  (1955) {{ZBL|0067.15204}}</TD></TR>
 +
</table>

Latest revision as of 16:59, 23 March 2023


The property of a point $ x $( a trajectory $ f ^ { t } x $) of a dynamical system $ f ^ { t } $( or $ f ( t , \cdot ) $, cf. [2]), given in a topological space $ S $, consisting in the following: There are sequences $ t _ {k} \rightarrow + \infty $, $ \tau _ {k} \rightarrow - \infty $ such that

$$ \lim\limits _ {k \rightarrow \infty } f ^ { t _ {k} } x = \ \lim\limits _ {k \rightarrow \infty } f ^ { \tau _ {k} } x = x . $$

In other words, $ x $ is an $ \alpha $- and $ \omega $- limit point (cf. Limit point of a trajectory) of the trajectory $ f ^ { t } x $. The concept of Poisson stability was introduced by H. Poincaré [1] on the basis of an analysis of results of Poisson on the stability of planetary orbits.

Every Poisson-stable point is non-wandering; the converse is not true (cf. Wandering point). Every fixed and every periodic point, more generally, every recurrent point, is Poisson stable. If $ S = \mathbf R ^ {2} $ and the dynamical system is smooth (i.e. given by a vector field of class $ C ^ {1} $), then every Poisson-stable point is either fixed or periodic (cf. Poincaré–Bendixson theory).

Poincaré's recurrence theorem (cf. Poincaré return theorem): If a dynamical system is given in a bounded domain of $ \mathbf R ^ {n} $ and if Lebesgue measure is an invariant measure of the system, then all points are Poisson stable, with the exception of a certain set of the first category of measure zero (cf. [1], [3]). A generalization of this theorem to dynamical systems given on a space of infinite measure is the Hopf recurrence theorem (cf. [2]): If a dynamical system is given on an arbitrary domain in $ \mathbf R ^ {n} $( e.g. on $ \mathbf R ^ {n} $ itself) and if Lebesgue measure is an invariant measure of the system, then every point, with the exception of the points of a certain set of measure zero, is either Poisson stable or divergent, i.e.

$$ | f ^ { t } x | \rightarrow \infty \ \textrm{ as } | t | \rightarrow \infty . $$

There are still more general formulations of the theorems of Poincaré and E. Hopf (cf. [2]).

Comments

In Western literature on (abstract) topological dynamics (as opposed to the qualitative theory of differential equations) often the term "recurrent" is used for Poisson stability; see [a1]. For further comments, see Recurrent point.

References

[1] H. Poincaré, "Les méthodes nouvelles de la mécanique céleste", 3 , Gauthier-Villars (1899) pp. Chapt. 26 Zbl 30.0834.08
[2] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations", Princeton Univ. Press (1960) (Translated from Russian)
[3] J.C. Oxtoby, "Measure and category", Springer (1971) Zbl 0217.09201
[a1] W.H. Gottschalk, G.A. Hedlund, "Topological dynamics", Amer. Math. Soc. (1955) Zbl 0067.15204
How to Cite This Entry:
Poisson stability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_stability&oldid=12373
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article