# Poincaré inequality

From Encyclopedia of Mathematics

Revision as of 20:01, 26 November 2012 by Nikita2 (talk | contribs) (Created page with "Let $f\in W^1_p(\mathbb R^n)$, $1\leqslant p < n$ and $p^* = \frac{np}{n-p}$ then the following inequality holds \begin{equation}\label{eq:1} \Bigl(\int\limits_{B}|f(x)-f_B|^{...")

Let $f\in W^1_p(\mathbb R^n)$, $1\leqslant p < n$ and $p^* = \frac{np}{n-p}$ then the following inequality holds \begin{equation}\label{eq:1} \Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}} \end{equation} for any balls $B \subset \mathbb R^n$, and constant $C$ depends only on $n$ and $p$.

### References

[EG] | L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800 |

[JH] | J. Heinonen, "Lectures on Analysis on Metric Spaces" Springer, New York, NY, 2001. |

**How to Cite This Entry:**

Poincaré inequality.

*Encyclopedia of Mathematics.*URL: http://www.encyclopediaofmath.org/index.php?title=Poincar%C3%A9_inequality&oldid=28906