Namespaces
Variants
Actions

Difference between revisions of "Pluriharmonic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729201.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729202.png" /> complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729203.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729204.png" /> of the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729206.png" />, that has continuous derivatives with respect to the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729207.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p0729209.png" />, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292010.png" /> up to the second order inclusive and that satisfies the following system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292011.png" /> equations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292012.png" />:
+
<!--
 +
p0729201.png
 +
$#A+1 = 51 n = 1
 +
$#C+1 = 51 : ~/encyclopedia/old_files/data/P072/P.0702920 Pluriharmonic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292014.png" /></td> </tr></table>
+
A function  $  u = u( z) $
 +
of  $  n $
 +
complex variables  $  z = ( z _ {1} \dots z _ {n} ) $
 +
in a domain  $  D $
 +
of the complex space  $  \mathbf C  ^ {n} $,
 +
$  n \geq  1 $,
 +
that has continuous derivatives with respect to the coordinates  $  x _  \nu  , y _  \nu  $,
 +
$  z _  \nu  = x _  \nu  + iy _  \nu  $,
 +
$  \nu = 1 \dots n $,
 +
in  $  D $
 +
up to the second order inclusive and that satisfies the following system of  $  n  ^ {2} $
 +
equations in  $  D $:
 +
 
 +
$$ \tag{1 }
 +
\left .
 +
\begin{array}{c}
 +
 
 +
\frac{\partial  ^ {2} u }{\partial  x _  \mu  \partial  x _  \nu  }
 +
+
 +
\frac{\partial  ^ {2}
 +
u }{\partial  y _  \mu  \partial  y _  \nu  }
 +
  =  0,
 +
\\
 +
 
 +
\frac{\partial  ^ {2} u }{\partial  x _  \mu  \partial  y _  \nu  }
 +
-  
 +
\frac{\partial  ^ {2}
 +
u }{\partial  y _  \mu  \partial  x _  \nu  }
 +
  = 0,
 +
\end{array}
 +
 
 +
\right \}
 +
$$
 +
 
 +
$$
 +
\mu , \nu  = 1 \dots n.
 +
$$
  
 
One uses the formal derivatives
 
One uses the formal derivatives
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292015.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{\partial  u }{\partial  z _  \nu  }
 +
  =
 +
\frac{1}{2}
 +
\left (
 +
\frac{\partial  u }{
 +
\partial  x _  \nu  }
 +
- i
 +
\frac{\partial  u }{\partial  y _  \nu  }
 +
\right ) ,\ \
 +
 
 +
\frac{\partial  u }{\partial  \overline{z}\; _  \nu  }
 +
  =
 +
\frac{1}{2}
 +
\left (
 +
\frac{\partial  u }{\partial  x _  \nu  }
 +
+ i
 +
\frac{\partial  u }{\partial  y _  \nu  }
 +
\right )
 +
$$
  
 
to write (1) in the more compact form:
 
to write (1) in the more compact form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
  
The significance of the class of pluriharmonic functions is determined by the fact that the real and imaginary parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292018.png" /> of any holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292019.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292020.png" /> are pluriharmonic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292021.png" />; two such real-valued pluriharmonic functions are called conjugate. Conversely, if one is given a pluriharmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292022.png" /> in a simply-connected neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292023.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292024.png" />, then there exists a holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292025.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292026.png" /> with real part equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292027.png" />. The task of determining this holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292028.png" /> amounts to finding the conjugate pluriharmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292029.png" /> from the formula
+
\frac{\partial  ^ {2} u }{\partial  \overline{z}\; _  \mu  \partial  z _  \nu  }
 +
  = 0,\ \
 +
\mu , \nu = 1 \dots n.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292030.png" /></td> </tr></table>
+
The significance of the class of pluriharmonic functions is determined by the fact that the real and imaginary parts  $  u = \mathop{\rm Re}  f $
 +
and  $  v = \mathop{\rm Im}  f $
 +
of any holomorphic function  $  f = u + iv $
 +
in  $  D $
 +
are pluriharmonic functions in  $  D $;  
 +
two such real-valued pluriharmonic functions are called conjugate. Conversely, if one is given a pluriharmonic function  $  u $
 +
in a simply-connected neighbourhood  $  V $
 +
of a point  $  z  ^ {0} = x  ^ {0} + iy  ^ {0} \in \mathbf C  ^ {n} $,
 +
then there exists a holomorphic function  $  f = u + iv $
 +
in  $  V $
 +
with real part equal to  $  u $.
 +
The task of determining this holomorphic function  $  f $
 +
amounts to finding the conjugate pluriharmonic function  $  v $
 +
from the formula
 +
 
 +
$$
 +
v( z)  = \int\limits _ {z  ^ {0} } ^ { z }  \
 +
\sum _ {\nu = 1 } ^ { n }  \left ( -
 +
\frac{\partial  u }{\partial  y _  \nu  }
 +
  dx _  \nu  +
 +
\frac{\partial  u }{\partial  x _  \nu  }
 +
  dy _  \nu  \right ) + C,\ \
 +
z \in V,
 +
$$
  
 
where the integral is independent of the path by virtue of (1).
 
where the integral is independent of the path by virtue of (1).
  
In general, one may also consider complex-valued pluriharmonic functions, which are defined as solutions to (1) or (2). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292031.png" />, the pluriharmonic functions constitute a proper subclass of the class of multiharmonic functions (cf. [[Multiharmonic function|Multiharmonic function]]), which in turn is a proper subclass of the class of harmonic functions (cf. [[Harmonic function|Harmonic function]]); all three classes coincide for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292032.png" />. On the other hand, the real-valued pluriharmonic functions constitute a proper subclass of the class of plurisubharmonic functions (cf. [[Plurisubharmonic function|Plurisubharmonic function]]) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292033.png" />, which in turn for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292034.png" /> is a proper subclass of the class of subharmonic functions (cf. [[Subharmonic function|Subharmonic function]]).
+
In general, one may also consider complex-valued pluriharmonic functions, which are defined as solutions to (1) or (2). For $  n > 1 $,  
 +
the pluriharmonic functions constitute a proper subclass of the class of multiharmonic functions (cf. [[Multiharmonic function|Multiharmonic function]]), which in turn is a proper subclass of the class of harmonic functions (cf. [[Harmonic function|Harmonic function]]); all three classes coincide for $  n= 1 $.  
 +
On the other hand, the real-valued pluriharmonic functions constitute a proper subclass of the class of plurisubharmonic functions (cf. [[Plurisubharmonic function|Plurisubharmonic function]]) for $  n \geq  1 $,  
 +
which in turn for $  n > 1 $
 +
is a proper subclass of the class of subharmonic functions (cf. [[Subharmonic function|Subharmonic function]]).
  
Pluriharmonic functions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292035.png" /> have not only the general properties of harmonic functions, but also characteristic ones due, in general, to the fact that (1), or (2), is an overdetermined system in that case. Suppose, for example, that the pluriharmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292036.png" /> in the unit polydisc
+
Pluriharmonic functions for $  n > 1 $
 +
have not only the general properties of harmonic functions, but also characteristic ones due, in general, to the fact that (1), or (2), is an overdetermined system in that case. Suppose, for example, that the pluriharmonic function $  u( z) $
 +
in the unit polydisc
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292037.png" /></td> </tr></table>
+
$$
 +
U  ^ {n}  = \{ {z \in \mathbf C  ^ {n} } : {| z _  \nu  | < 1 ,\
 +
\nu = 1 \dots n } \}
 +
$$
  
is continuous in the closed polydisc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292039.png" />. Then even its boundary values on the skeleton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292040.png" />, this being a proper part of the entire boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292041.png" />, cannot be specified as an arbitrary continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292043.png" />; they must satisfy certain additional conditions. Therefore, within the class of pluriharmonic functions the Dirichlet problem with data on the skeleton is solvable only for special choices of the boundary data [[#References|[3]]].
+
is continuous in the closed polydisc $  \overline{ {U }}\; {}  ^ {n} $,  
 +
$  n > 1 $.  
 +
Then even its boundary values on the skeleton $  T  ^ {n} = \{ {\zeta \in \mathbf C  ^ {n} } : {| \zeta _  \nu  | = 1,  \nu = 1 \dots n } \} $,  
 +
this being a proper part of the entire boundary $  \partial  U  ^ {n} $,  
 +
cannot be specified as an arbitrary continuous function $  U  ^ {*} ( \zeta ) $,  
 +
$  \zeta \in T  ^ {n} $;  
 +
they must satisfy certain additional conditions. Therefore, within the class of pluriharmonic functions the Dirichlet problem with data on the skeleton is solvable only for special choices of the boundary data [[#References|[3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.D. Solomentsev,  "Harmonic and subharmonic functions and their generalizations"  ''Itogi Nauk. Mat. Anal. Teor. Veroyatnost. Regulirovanie''  (1964)  pp. 83–100  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W. Rudin,  "Function theory in polydiscs" , Benjamin  (1969)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.D. Solomentsev,  "Harmonic and subharmonic functions and their generalizations"  ''Itogi Nauk. Mat. Anal. Teor. Veroyatnost. Regulirovanie''  (1964)  pp. 83–100  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W. Rudin,  "Function theory in polydiscs" , Benjamin  (1969)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The Dirichlet problem for pluriharmonic functions with data on the unit sphere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292044.png" /> is, of course, also solvable for special data only. The boundary data have to satisfy a certain system of third-order (!) partial differential equations, comparable to the tangential Cauchy–Riemann equations, see [[#References|[a1]]], Chapt. 18.
+
The Dirichlet problem for pluriharmonic functions with data on the unit sphere in $  \mathbf C  ^ {n} $
 +
is, of course, also solvable for special data only. The boundary data have to satisfy a certain system of third-order (!) partial differential equations, comparable to the tangential Cauchy–Riemann equations, see [[#References|[a1]]], Chapt. 18.
  
Pluriharmonic functions often serve as a replacement for harmonic functions in the setting of several complex variables. One example is an analogue of classical Hardy spaces (cf. [[Hardy classes|Hardy classes]]) on the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292045.png" />. Lumer's Hardy space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292046.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292047.png" /> consists of those holomorphic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292048.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292049.png" /> for some plurisubharmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292050.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292051.png" />.
+
Pluriharmonic functions often serve as a replacement for harmonic functions in the setting of several complex variables. One example is an analogue of classical Hardy spaces (cf. [[Hardy classes|Hardy classes]]) on the unit disc $  \Delta $.  
 +
Lumer's Hardy space $  LH  ^ {p} $
 +
on $  \Delta $
 +
consists of those holomorphic functions $  f $
 +
such that $  | f | \leq  U $
 +
for some plurisubharmonic function $  U $
 +
on $  \Delta $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Function theory in the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292052.png" />" , Springer  (1980)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Function theory in the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072920/p07292052.png" />" , Springer  (1980)</TD></TR></table>

Latest revision as of 08:06, 6 June 2020


A function $ u = u( z) $ of $ n $ complex variables $ z = ( z _ {1} \dots z _ {n} ) $ in a domain $ D $ of the complex space $ \mathbf C ^ {n} $, $ n \geq 1 $, that has continuous derivatives with respect to the coordinates $ x _ \nu , y _ \nu $, $ z _ \nu = x _ \nu + iy _ \nu $, $ \nu = 1 \dots n $, in $ D $ up to the second order inclusive and that satisfies the following system of $ n ^ {2} $ equations in $ D $:

$$ \tag{1 } \left . \begin{array}{c} \frac{\partial ^ {2} u }{\partial x _ \mu \partial x _ \nu } + \frac{\partial ^ {2} u }{\partial y _ \mu \partial y _ \nu } = 0, \\ \frac{\partial ^ {2} u }{\partial x _ \mu \partial y _ \nu } - \frac{\partial ^ {2} u }{\partial y _ \mu \partial x _ \nu } = 0, \end{array} \right \} $$

$$ \mu , \nu = 1 \dots n. $$

One uses the formal derivatives

$$ \frac{\partial u }{\partial z _ \nu } = \frac{1}{2} \left ( \frac{\partial u }{ \partial x _ \nu } - i \frac{\partial u }{\partial y _ \nu } \right ) ,\ \ \frac{\partial u }{\partial \overline{z}\; _ \nu } = \frac{1}{2} \left ( \frac{\partial u }{\partial x _ \nu } + i \frac{\partial u }{\partial y _ \nu } \right ) $$

to write (1) in the more compact form:

$$ \tag{2 } \frac{\partial ^ {2} u }{\partial \overline{z}\; _ \mu \partial z _ \nu } = 0,\ \ \mu , \nu = 1 \dots n. $$

The significance of the class of pluriharmonic functions is determined by the fact that the real and imaginary parts $ u = \mathop{\rm Re} f $ and $ v = \mathop{\rm Im} f $ of any holomorphic function $ f = u + iv $ in $ D $ are pluriharmonic functions in $ D $; two such real-valued pluriharmonic functions are called conjugate. Conversely, if one is given a pluriharmonic function $ u $ in a simply-connected neighbourhood $ V $ of a point $ z ^ {0} = x ^ {0} + iy ^ {0} \in \mathbf C ^ {n} $, then there exists a holomorphic function $ f = u + iv $ in $ V $ with real part equal to $ u $. The task of determining this holomorphic function $ f $ amounts to finding the conjugate pluriharmonic function $ v $ from the formula

$$ v( z) = \int\limits _ {z ^ {0} } ^ { z } \ \sum _ {\nu = 1 } ^ { n } \left ( - \frac{\partial u }{\partial y _ \nu } dx _ \nu + \frac{\partial u }{\partial x _ \nu } dy _ \nu \right ) + C,\ \ z \in V, $$

where the integral is independent of the path by virtue of (1).

In general, one may also consider complex-valued pluriharmonic functions, which are defined as solutions to (1) or (2). For $ n > 1 $, the pluriharmonic functions constitute a proper subclass of the class of multiharmonic functions (cf. Multiharmonic function), which in turn is a proper subclass of the class of harmonic functions (cf. Harmonic function); all three classes coincide for $ n= 1 $. On the other hand, the real-valued pluriharmonic functions constitute a proper subclass of the class of plurisubharmonic functions (cf. Plurisubharmonic function) for $ n \geq 1 $, which in turn for $ n > 1 $ is a proper subclass of the class of subharmonic functions (cf. Subharmonic function).

Pluriharmonic functions for $ n > 1 $ have not only the general properties of harmonic functions, but also characteristic ones due, in general, to the fact that (1), or (2), is an overdetermined system in that case. Suppose, for example, that the pluriharmonic function $ u( z) $ in the unit polydisc

$$ U ^ {n} = \{ {z \in \mathbf C ^ {n} } : {| z _ \nu | < 1 ,\ \nu = 1 \dots n } \} $$

is continuous in the closed polydisc $ \overline{ {U }}\; {} ^ {n} $, $ n > 1 $. Then even its boundary values on the skeleton $ T ^ {n} = \{ {\zeta \in \mathbf C ^ {n} } : {| \zeta _ \nu | = 1, \nu = 1 \dots n } \} $, this being a proper part of the entire boundary $ \partial U ^ {n} $, cannot be specified as an arbitrary continuous function $ U ^ {*} ( \zeta ) $, $ \zeta \in T ^ {n} $; they must satisfy certain additional conditions. Therefore, within the class of pluriharmonic functions the Dirichlet problem with data on the skeleton is solvable only for special choices of the boundary data [3].

References

[1] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian)
[2] E.D. Solomentsev, "Harmonic and subharmonic functions and their generalizations" Itogi Nauk. Mat. Anal. Teor. Veroyatnost. Regulirovanie (1964) pp. 83–100 (In Russian)
[3] W. Rudin, "Function theory in polydiscs" , Benjamin (1969)

Comments

The Dirichlet problem for pluriharmonic functions with data on the unit sphere in $ \mathbf C ^ {n} $ is, of course, also solvable for special data only. The boundary data have to satisfy a certain system of third-order (!) partial differential equations, comparable to the tangential Cauchy–Riemann equations, see [a1], Chapt. 18.

Pluriharmonic functions often serve as a replacement for harmonic functions in the setting of several complex variables. One example is an analogue of classical Hardy spaces (cf. Hardy classes) on the unit disc $ \Delta $. Lumer's Hardy space $ LH ^ {p} $ on $ \Delta $ consists of those holomorphic functions $ f $ such that $ | f | \leq U $ for some plurisubharmonic function $ U $ on $ \Delta $.

References

[a1] W. Rudin, "Function theory in the unit ball in " , Springer (1980)
How to Cite This Entry:
Pluriharmonic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pluriharmonic_function&oldid=16481
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article