Namespaces
Variants
Actions

Difference between revisions of "Plücker coordinates"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
Line 73: Line 73:
 
is fixed, the Plücker coordinates are all multiplied by the same non-zero number. When the basis of  $  V $
 
is fixed, the Plücker coordinates are all multiplied by the same non-zero number. When the basis of  $  V $
 
is changed and the basis for  $  W $
 
is changed and the basis for  $  W $
is fixed, the Plücker coordinates transform as the components of a contravariant tensor of valency  $  p $(
+
is fixed, the Plücker coordinates transform as the components of a contravariant tensor of valency  $  p $
see [[Poly-vector|Poly-vector]]). Two subspaces coincide if and only if their Plücker coordinates, calculated in the same basis for  $  V $,  
+
(see [[Poly-vector|Poly-vector]]). Two subspaces coincide if and only if their Plücker coordinates, calculated in the same basis for  $  V $,  
 
differ only by a non-zero factor.
 
differ only by a non-zero factor.
  
Line 82: Line 82:
  
 
$$  
 
$$  
\sum _ {\alpha = 1 } ^ { p+ } 1 (- 1) ^ {\alpha - 1 } x ^ {i _  \alpha  } u ^  
+
\sum _ {\alpha = 1 } ^ { p+1 } (- 1) ^ {\alpha - 1 } x ^ {i _  \alpha  } u ^  
 
{i _ {1} \dots i _ {\alpha - 1 }  i _ {\alpha + 1 }  \dots i _ {p} }  =  0,
 
{i _ {1} \dots i _ {\alpha - 1 }  i _ {\alpha + 1 }  \dots i _ {p} }  =  0,
 
$$
 
$$
Line 104: Line 104:
 
$$
 
$$
  
The Plücker coordinates of  $  p $-
+
The Plücker coordinates of  $  p $-dimensional subspaces  $  W $
dimensional subspaces  $  W $
+
of an  $  n $-dimensional space  $  V $  
of an  $  n $-
+
(over any field) define an imbedding of the Grassmann variety  $  G _ {p} ( V) $
dimensional space  $  V $(
+
into  $  N $-dimensional projective space  $  P  ^ {N} $
over any field) define an imbedding of the Grassmann variety  $  G _ {p} ( V) $
 
into  $  N $-
 
dimensional projective space  $  P  ^ {N} $
 
 
with  $  N = ( {} _ {p}  ^ {n} ) - 1 $.  
 
with  $  N = ( {} _ {p}  ^ {n} ) - 1 $.  
 
As a subvariety of  $  P  ^ {N} $,  
 
As a subvariety of  $  P  ^ {N} $,  
Line 117: Line 114:
  
 
$$  
 
$$  
\sum _ { k= } 1 ^ { p }  (- 1)  ^ {k} u ^ {i _ {1} \dots i _ {p-} j j _ {k} }
+
\sum _ { k=1 } ^ { p }  (- 1)  ^ {k} u ^ {i _ {1} \dots i _ {p-1} j _ {k} }
u ^ {j _ {1} \dots {j _ {k} } hat \dots j _ {p+} 1 }  =  0,
+
u ^ {j _ {1} \dots \widehat{j _ {k} } \dots j _ {p+1} }  =  0,
 
$$
 
$$
  
 
i.e. take  $  2p $
 
i.e. take  $  2p $
indices  $  1 \leq  i _ {1} \dots i _ {p-} 1 $;  
+
indices  $  1 \leq  i _ {1} \dots i _ {p-1} $;  
$  j _ {1} \dots j _ {p+} 1 \leq  n $
+
$  j _ {1} \dots j _ {p+1} \leq  n $
 
and write down the relation above, using that  $  u ^ {k _ {1} \dots k _ {p} } = 0 $
 
and write down the relation above, using that  $  u ^ {k _ {1} \dots k _ {p} } = 0 $
 
if two of the  $  k $'
 
if two of the  $  k $'

Revision as of 12:47, 23 January 2021


The coordinates of a straight line in three-dimensional space, the six numbers $ p _ {01} , p _ {02} , p _ {03} , p _ {23} , p _ {31} $, and $ p _ {12} $, of which the first three are the coordinates of the direction vector $ l $ for the straight line $ L $ and the second three are the moments of this vector about the origin. Let the line $ L $ pass through the points $ X $ and $ Y $ with projective coordinates $ ( x _ {0} : \dots : x _ {3} ) $ and $ ( y _ {0} : \dots : y _ {3} ) $, respectively; the Plücker coordinates for this line are the numbers

$$ p _ {ik} = x _ {i} y _ {k} - x _ {k} y _ {i} . $$

The Plücker coordinates are used in line geometry. They were first considered by J. Plücker (1869). Sometimes, instead of the Plücker coordinates one uses the Klein coordinates $ ( x _ {0} : \dots : x _ {5} ) $, which are related to the Plücker ones as follows:

$$ p _ {01} = x _ {0} + x _ {1} ,\ \ p _ {02} = x _ {2} + x _ {3} ,\ \ p _ {03} = x _ {4} + x _ {5} , $$

$$ p _ {23} = x _ {0} - x _ {1} ,\ p _ {31} = x _ {2} - x _ {3} ,\ p _ {12} = x _ {4} - x _ {5} . $$

More generally, one naturally considers the Plücker coordinates as coordinates of a $ p $- dimensional vector subspace of an $ n $- dimensional vector space $ V $. Then they are understood as the set of numbers equal to $ ( p \times p) $- subdeterminants of the $ ( n \times p) $- matrix $ A( a _ {1} \dots a _ {p} ) $ with as columns $ a _ {i} $, $ 1 \leq i \leq p $, the coordinate columns (in some basis for $ V $) of the basis vectors of a subspace $ W $. If $ a _ {i} ^ {j} $ are the components of a column $ a _ {i} $, $ 1 \leq i \leq p $, then the Plücker coordinates (or Grassmann coordinates) are the numbers

$$ u ^ {i _ {1} \dots i _ {p} } = \left | \begin{array}{lll} a _ {1} ^ {i _ {i} } &\dots &a _ {p} ^ {i _ {1} } \\ \cdot &\dots &\cdot \\ a _ {1} ^ {i _ {p} } &\dots &a _ {p} ^ {i _ {p} } \\ \end{array} \right | = \ p! a _ {1} ^ {[ i _ {1} } \dots a _ {p} ^ { {} i _ {p} ] } ,\ \ 1 \leq i _ \nu \leq n. $$

The Plücker coordinates are anti-symmetric in all indices. The number of significant Plücker coordinates is $ ( {} _ {p} ^ {n} ) $.

When the basis of $ W $ is changed and the basis for $ V $ is fixed, the Plücker coordinates are all multiplied by the same non-zero number. When the basis of $ V $ is changed and the basis for $ W $ is fixed, the Plücker coordinates transform as the components of a contravariant tensor of valency $ p $ (see Poly-vector). Two subspaces coincide if and only if their Plücker coordinates, calculated in the same basis for $ V $, differ only by a non-zero factor.

A vector $ x $ belongs to a subspace $ W $ if the linear equations

$$ \sum _ {\alpha = 1 } ^ { p+1 } (- 1) ^ {\alpha - 1 } x ^ {i _ \alpha } u ^ {i _ {1} \dots i _ {\alpha - 1 } i _ {\alpha + 1 } \dots i _ {p} } = 0, $$

with coefficients that are the Plücker coordinates for $ W $, are fulfilled. In these equations $ i _ {1} < \dots < i _ {p} $ are all possible sets of numbers $ 1 \dots n $.

Comments

Relating the Plücker and Klein coordinates as above, the Plücker identity

$$ p _ {01} p _ {23} + p _ {02} p _ {31} + p _ {03} p _ {12} = 0 $$

becomes

$$ x _ {0} ^ {2} + x _ {2} ^ {2} + x _ {4} ^ {2} = \ x _ {1} ^ {2} + x _ {3} ^ {2} + x _ {5} ^ {2} . $$

The Plücker coordinates of $ p $-dimensional subspaces $ W $ of an $ n $-dimensional space $ V $ (over any field) define an imbedding of the Grassmann variety $ G _ {p} ( V) $ into $ N $-dimensional projective space $ P ^ {N} $ with $ N = ( {} _ {p} ^ {n} ) - 1 $. As a subvariety of $ P ^ {N} $, $ G _ {p} ( V) $ is given by quadratic relations, the Plücker relations, which look as follows:

$$ \sum _ { k=1 } ^ { p } (- 1) ^ {k} u ^ {i _ {1} \dots i _ {p-1} j _ {k} } u ^ {j _ {1} \dots \widehat{j _ {k} } \dots j _ {p+1} } = 0, $$

i.e. take $ 2p $ indices $ 1 \leq i _ {1} \dots i _ {p-1} $; $ j _ {1} \dots j _ {p+1} \leq n $ and write down the relation above, using that $ u ^ {k _ {1} \dots k _ {p} } = 0 $ if two of the $ k $' s are equal. If $ p = 2 $, $ n = 4 $, there is just one relation: $ u ^ {12} u ^ {34} - u ^ {13} u ^ {24} + u ^ {14} u ^ {23} = 0 $.

References

[a1] H.S.M. Coxeter, "Non-Euclidean geometry" , Univ. Toronto Press (1965) pp. 88–90
[a2] B.L. van der Waerden, "Einführung in die algebraische Geometrie" , Springer (1939) pp. Chapt. 1
How to Cite This Entry:
Plücker coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pl%C3%BCcker_coordinates&oldid=51501
This article was adapted from an original article by L.P. Kuptsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article