Namespaces
Variants
Actions

Difference between revisions of "Pi-solvable group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A generalization of the concept of a [[Solvable group|solvable group]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710102.png" /> be a certain set of prime numbers. A finite group for which the order of each composition factor either is coprime to any member of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710103.png" /> or coincides with a certain prime in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710104.png" />, is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710106.png" />-solvable group. The basic properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710107.png" />-solvable groups are similar to the properties of solvable groups. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710108.png" />-solvable group is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p0710109.png" />-solvable group for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101010.png" />; the subgroups, quotient groups and extensions of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101011.png" />-solvable group by a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101012.png" />-solvable group are also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101013.png" />-solvable groups. In a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101014.png" />-solvable group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101015.png" /> every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101017.png" />-subgroup (that is, a subgroup all prime factors of the order of which belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101018.png" />) is contained in some Hall <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101020.png" />-subgroup (a Hall <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101021.png" />-subgroup is one with index in the group not divisible by any prime in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101022.png" />) and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101023.png" />-subgroup (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101024.png" /> is the complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101025.png" /> in the set of all prime numbers) is contained in some Hall <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101026.png" />-subgroup; all Hall <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101027.png" />-subgroups and also all Hall <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101028.png" />-subgroups are conjugate in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101029.png" />; the index of a maximal subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101030.png" /> is either not divisible by any number in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101031.png" /> or is a power of one of the numbers of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101032.png" /> (see [[#References|[1]]]). The number of Hall <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101033.png" />-subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101034.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101035.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101036.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png" />) for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101038.png" /> which divides the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101039.png" />, and, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101040.png" /> divides the order of one of the chief factors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101041.png" /> (see [[#References|[2]]]).
+
<!--
 +
p0710102.png
 +
$#A+1 = 37 n = 0
 +
$#C+1 = 37 : ~/encyclopedia/old_files/data/P071/P.0701010 \BMI \Gpi\EMI\AAhsolvable group
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A generalization of the concept of a [[Solvable group|solvable group]]. Let $  \pi $
 +
be a certain set of prime numbers. A finite group for which the order of each composition factor either is coprime to any member of $  \pi $
 +
or coincides with a certain prime in $  \pi $,  
 +
is called a $  \pi $-
 +
solvable group. The basic properties of $  \pi $-
 +
solvable groups are similar to the properties of solvable groups. A $  \pi $-
 +
solvable group is a $  \pi _ {1} $-
 +
solvable group for any $  \pi _ {1} \subset  \pi $;  
 +
the subgroups, quotient groups and extensions of a $  \pi $-
 +
solvable group by a $  \pi $-
 +
solvable group are also $  \pi $-
 +
solvable groups. In a $  \pi $-
 +
solvable group $  G $
 +
every $  \pi $-
 +
subgroup (that is, a subgroup all prime factors of the order of which belong to $  \pi $)  
 +
is contained in some Hall $  \pi $-
 +
subgroup (a Hall $  \pi $-
 +
subgroup is one with index in the group not divisible by any prime in $  \pi $)  
 +
and every $  \pi  ^  \prime  $-
 +
subgroup (where $  \pi  ^  \prime  $
 +
is the complement of $  \pi $
 +
in the set of all prime numbers) is contained in some Hall $  \pi  ^  \prime  $-
 +
subgroup; all Hall $  \pi $-
 +
subgroups and also all Hall $  \pi  ^  \prime  $-
 +
subgroups are conjugate in $  G $;  
 +
the index of a maximal subgroup of the group $  G $
 +
is either not divisible by any number in $  \pi $
 +
or is a power of one of the numbers of the set $  \pi $(
 +
see [[#References|[1]]]). The number of Hall $  \pi $-
 +
subgroup in $  G $
 +
is equal to $  \alpha _ {1} \dots \alpha _ {t} $,  
 +
where $  \alpha _ {i} \equiv 1 $(
 +
$  \mathop{\rm mod}  p _ {i} $)  
 +
for every p _ {i} \in \pi $
 +
which divides the order of $  G $,  
 +
and, moreover, $  \alpha _ {i} $
 +
divides the order of one of the chief factors of $  G $(
 +
see [[#References|[2]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.A. Chunikhin,  "Subgroups of finite groups" , Wolters-Noordhoff  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Brauer,  "Zu den Sylowsätzen von Hall und Čunichin"  ''Arch. Math.'' , '''19''' :  3  (1968)  pp. 245–255</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.A. Chunikhin,  "Subgroups of finite groups" , Wolters-Noordhoff  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Brauer,  "Zu den Sylowsätzen von Hall und Čunichin"  ''Arch. Math.'' , '''19''' :  3  (1968)  pp. 245–255</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J.S. Robinson,  "A course in the theory of groups" , Springer  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J.S. Robinson,  "A course in the theory of groups" , Springer  (1982)</TD></TR></table>

Latest revision as of 08:06, 6 June 2020


A generalization of the concept of a solvable group. Let $ \pi $ be a certain set of prime numbers. A finite group for which the order of each composition factor either is coprime to any member of $ \pi $ or coincides with a certain prime in $ \pi $, is called a $ \pi $- solvable group. The basic properties of $ \pi $- solvable groups are similar to the properties of solvable groups. A $ \pi $- solvable group is a $ \pi _ {1} $- solvable group for any $ \pi _ {1} \subset \pi $; the subgroups, quotient groups and extensions of a $ \pi $- solvable group by a $ \pi $- solvable group are also $ \pi $- solvable groups. In a $ \pi $- solvable group $ G $ every $ \pi $- subgroup (that is, a subgroup all prime factors of the order of which belong to $ \pi $) is contained in some Hall $ \pi $- subgroup (a Hall $ \pi $- subgroup is one with index in the group not divisible by any prime in $ \pi $) and every $ \pi ^ \prime $- subgroup (where $ \pi ^ \prime $ is the complement of $ \pi $ in the set of all prime numbers) is contained in some Hall $ \pi ^ \prime $- subgroup; all Hall $ \pi $- subgroups and also all Hall $ \pi ^ \prime $- subgroups are conjugate in $ G $; the index of a maximal subgroup of the group $ G $ is either not divisible by any number in $ \pi $ or is a power of one of the numbers of the set $ \pi $( see [1]). The number of Hall $ \pi $- subgroup in $ G $ is equal to $ \alpha _ {1} \dots \alpha _ {t} $, where $ \alpha _ {i} \equiv 1 $( $ \mathop{\rm mod} p _ {i} $) for every $ p _ {i} \in \pi $ which divides the order of $ G $, and, moreover, $ \alpha _ {i} $ divides the order of one of the chief factors of $ G $( see [2]).

References

[1] S.A. Chunikhin, "Subgroups of finite groups" , Wolters-Noordhoff (1969) (Translated from Russian)
[2] W. Brauer, "Zu den Sylowsätzen von Hall und Čunichin" Arch. Math. , 19 : 3 (1968) pp. 245–255

Comments

References

[a1] D.J.S. Robinson, "A course in the theory of groups" , Springer (1982)
How to Cite This Entry:
Pi-solvable group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pi-solvable_group&oldid=15840
This article was adapted from an original article by S.P. Strunkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article