Namespaces
Variants
Actions

Pfaffian

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 15-XX [MSN][ZBL]

The Pfaffian (of a skew-symmetric matrix $X$) is the polynomial $\def\Pf{\mathrm{Pf}\;} \Pf X$ in the entries of $X$ whose square is the determinant $\det X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e. $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an alternating matrix) of order $2n$ over a commutative-associative ring $A$ with a unit, then $\Pf X$ is the element of $A$ given by the formula

$$ \Pf X = \sum_s \epsilon(s)x_{i_1j_1}\ldots x_{i_nj_n}, $$

where the summation is over all possible partitions $s$ of the set $\{1,\ldots,2n\}$ into non-intersecting pairs $\{i_\alpha,j_\alpha\}$, where one may suppose that $i_\alpha<j_\alpha$, $\alpha=1,\ldots,n$, and where $\epsilon(s)$ is the sign of the permutation

$$ \left( \begin{matrix} 1 & 2 & \ldots & 2n-1 & 2n \\ i_1 & j_1 & \ldots & i_n & j_n \end{matrix} \right). $$

A Pfaffian has the following properties:

  1. $\Pf (C^T X C) = (\det C) (\Pf X)$ for any matrix $C$ of order $2n$;
  2. $(\Pf X)^2= \det X$;
  3. if $E$ is a free $A$-module with basis $e_1,\ldots,e_{2n}$ and if $$ u = \sum_{i < j} x_{ij} e_i \wedge e_j \in \bigwedge^2 A, $$ then $$ \bigwedge^n u =n! (\Pf X) e_1 \wedge \ldots \wedge e_{2n}. $$

References

[Bo] N. Bourbaki, "Elements of mathematics", 2. Linear and multilinear algebra, Addison-Wesley (1973) pp. Chapt. 2 (Translated from French) MR0274237
How to Cite This Entry:
Pfaffian. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pfaffian&oldid=35223
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article