Namespaces
Variants
Actions

Difference between revisions of "Perron transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
p0723901.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/P072/P.0702390 Perron transformation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An orthogonal (unitary) transformation
 
An orthogonal (unitary) transformation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
x  ^ {i}  = \sum _ { j= } 1 ^ { n }  u _ {j}  ^ {i} ( t) y  ^ {j} ,\ \
 +
i = 1 \dots n,
 +
$$
  
smoothly depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723902.png" /> and transforming a linear system of ordinary differential equations
+
smoothly depending on $  t $
 +
and transforming a linear system of ordinary differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\dot{x}  ^ {i}  = \sum _ { j= } 1 ^ { n }  a _ {j}  ^ {i} ( t) x  ^ {j} ,\ \
 +
i = 1 \dots n,
 +
$$
  
 
to a system of triangular type
 
to a system of triangular type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723904.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\dot{y}  ^ {i}  = \sum _ { j= } i ^ { n }  p _ {j}  ^ {i} ( t) y  ^ {j} ,\ \
 +
i = 1 \dots n.
 +
$$
  
It was introduced by O. Perron [[#References|[1]]]. Perron's theorem applies: For any linear system (2) with continuous coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723905.png" />, a Perron transformation exists.
+
It was introduced by O. Perron [[#References|[1]]]. Perron's theorem applies: For any linear system (2) with continuous coefficients $  a _ {j}  ^ {i} ( t) $,  
 +
a Perron transformation exists.
  
A Perron transformation is constructed by means of Gram–Schmidt [[Orthogonalization|orthogonalization]] (for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723906.png" />) of the vector system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723907.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723908.png" /> is some [[Fundamental system of solutions|fundamental system of solutions]] to (2), where different fundamental systems give, in general, different Perron transformations [[#References|[1]]], [[#References|[2]]]. For systems (2) with bounded continuous coefficients, all the Perron transformations are Lyapunov transformations (cf. [[Lyapunov transformation|Lyapunov transformation]]).
+
A Perron transformation is constructed by means of Gram–Schmidt [[Orthogonalization|orthogonalization]] (for each $  t $)  
 +
of the vector system $  x _ {1} ( t) \dots x _ {n} ( t) $,  
 +
where $  x _ {1} ( t) \dots x _ {n} ( t) $
 +
is some [[Fundamental system of solutions|fundamental system of solutions]] to (2), where different fundamental systems give, in general, different Perron transformations [[#References|[1]]], [[#References|[2]]]. For systems (2) with bounded continuous coefficients, all the Perron transformations are Lyapunov transformations (cf. [[Lyapunov transformation|Lyapunov transformation]]).
  
If the matrix-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p0723909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p07239010.png" />, is a [[Recurrent function|recurrent function]], one can find a recurrent matrix-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p07239011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p07239012.png" />, such that (1) is the Perron transformation that reduces (2) to the triangular form (3), where, moreover, the function
+
If the matrix-valued function $  \| a _ {j}  ^ {i} ( t) \| $,
 +
$  i, j = 1 \dots n $,  
 +
is a [[Recurrent function|recurrent function]], one can find a recurrent matrix-valued function $  \| u _ {j}  ^ {i} ( t) \| $,
 +
$  i, j = 1 \dots n $,  
 +
such that (1) is the Perron transformation that reduces (2) to the triangular form (3), where, moreover, the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072390/p07239013.png" /></td> </tr></table>
+
$$
 +
\| p _ {j}  ^ {i} ( t) \| ,\ \
 +
i, j = 1 \dots n,
 +
$$
  
 
is recurrent.
 
is recurrent.

Revision as of 08:05, 6 June 2020


An orthogonal (unitary) transformation

$$ \tag{1 } x ^ {i} = \sum _ { j= } 1 ^ { n } u _ {j} ^ {i} ( t) y ^ {j} ,\ \ i = 1 \dots n, $$

smoothly depending on $ t $ and transforming a linear system of ordinary differential equations

$$ \tag{2 } \dot{x} ^ {i} = \sum _ { j= } 1 ^ { n } a _ {j} ^ {i} ( t) x ^ {j} ,\ \ i = 1 \dots n, $$

to a system of triangular type

$$ \tag{3 } \dot{y} ^ {i} = \sum _ { j= } i ^ { n } p _ {j} ^ {i} ( t) y ^ {j} ,\ \ i = 1 \dots n. $$

It was introduced by O. Perron [1]. Perron's theorem applies: For any linear system (2) with continuous coefficients $ a _ {j} ^ {i} ( t) $, a Perron transformation exists.

A Perron transformation is constructed by means of Gram–Schmidt orthogonalization (for each $ t $) of the vector system $ x _ {1} ( t) \dots x _ {n} ( t) $, where $ x _ {1} ( t) \dots x _ {n} ( t) $ is some fundamental system of solutions to (2), where different fundamental systems give, in general, different Perron transformations [1], [2]. For systems (2) with bounded continuous coefficients, all the Perron transformations are Lyapunov transformations (cf. Lyapunov transformation).

If the matrix-valued function $ \| a _ {j} ^ {i} ( t) \| $, $ i, j = 1 \dots n $, is a recurrent function, one can find a recurrent matrix-valued function $ \| u _ {j} ^ {i} ( t) \| $, $ i, j = 1 \dots n $, such that (1) is the Perron transformation that reduces (2) to the triangular form (3), where, moreover, the function

$$ \| p _ {j} ^ {i} ( t) \| ,\ \ i, j = 1 \dots n, $$

is recurrent.

References

[1] O. Perron, "Ueber eine Matrixtransformation" Math. Z. , 32 (1930) pp. 465–473
[2] S.P. Diliberto, "On systems of ordinary differential equations" S. Lefschetz (ed.) et al. (ed.) , Contributions to the theory of nonlinear oscillations , Ann. Math. Studies , 20 , Princeton Univ. Press (1950) pp. 1–38
[3] B.F. Bylov, R.E. Vinograd, D.M. Grobman, V.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)
[4] N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 (1976) pp. 45–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146
How to Cite This Entry:
Perron transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perron_transformation&oldid=15417
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article