Namespaces
Variants
Actions

Difference between revisions of "Pauli matrices"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (Undo revision 48144 by Ulf Rehmann (talk))
Tag: Undo
Line 1: Line 1:
<!--
+
Certain special constant Hermitian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718601.png" />-matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718602.png" />) and magnetic moment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718603.png" /> of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718604.png" />) and can be obtained from the [[Dirac equation|Dirac equation]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718605.png" />. In explicit form the Pauli matrices are:
p0718601.png
 
$#A+1 = 41 n = 0
 
$#C+1 = 41 : ~/encyclopedia/old_files/data/P071/P.0701860 Pauli matrices
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
{{TEX|auto}}
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718606.png" /></td> </tr></table>
{{TEX|done}}
 
  
Certain special constant Hermitian  $  ( 2 \times 2) $-
+
Their eigen values are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718607.png" />. The Pauli matrices satisfy the following algebraic relations:
matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ( $  \vec{s} = (\hbar /2) \\vec{sigma} $)
 
and magnetic moment  $  ( \\vec{mu} = ( e \hbar /2mc) \\vec{sigma} ) $
 
of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units  $  \hbar $)
 
and can be obtained from the [[Dirac equation|Dirac equation]] for  $  v/c \ll  1 $.  
 
In explicit form the Pauli matrices are:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718608.png" /></td> </tr></table>
\sigma _ {1}  = \left (
 
  
Their eigen values are  $  \pm  1 $.
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718609.png" /></td> </tr></table>
The Pauli matrices satisfy the following algebraic relations:
 
 
 
$$
 
\sigma _ {i} \sigma _ {k} + \sigma _ {k} \sigma _ {i}  = 2 \delta _ {ik} ,
 
$$
 
 
 
$$
 
\sigma _ {i} \sigma _ {k} - \sigma _ {k} \sigma _ {i}  = 2i \epsilon _ {ikl} \sigma _ {l} .
 
$$
 
  
 
Together with the unit matrix
 
Together with the unit matrix
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186010.png" /></td> </tr></table>
\sigma _ {0= \left (
 
 
 
the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions  $  \psi _ {A} $,
 
$  A = 1, 2 $,
 
and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle  $  \theta $
 
around an axis with a directed unit vector  $  \mathbf n $,
 
a spinor  $  \psi _ {A} $
 
is transformed according to the formula
 
  
$$
+
the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186012.png" />, and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186013.png" /> around an axis with a directed unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186014.png" />, a spinor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186015.png" /> is transformed according to the formula
\psi _ {A}  = \left [ \sigma _ {0,AB }  +
 
  
\frac{1}{2}
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186016.png" /></td> </tr></table>
i \theta ( \sigma \cdot \mathbf n ) _ {AB} \right ] \psi _ {B}  ^  \prime  ,
 
$$
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186017.png" /></td> </tr></table>
\sigma \cdot \mathbf n  = \sigma _ {1} n _ {x} + \sigma _ {2} n _ {y} + \sigma _ {3} n _ {z} .
 
$$
 
  
From the Pauli matrices one can form the [[Dirac matrices|Dirac matrices]] $  \gamma _  \alpha  $,  
+
From the Pauli matrices one can form the [[Dirac matrices|Dirac matrices]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186019.png" />:
$  \alpha = 0, 1, 2, 3 $:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186020.png" /></td> </tr></table>
\gamma _ {0= \left (
 
  
The real linear combinations of $  \sigma _ {0} $,  
+
The real linear combinations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186024.png" /> form a four-dimensional subalgebra of the algebra of complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186025.png" />-matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186026.png" />. In this case they are generators of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186027.png" />-dimensional representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186028.png" /> and are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186031.png" />. Sometimes it is convenient to use the linear combinations
$  i \sigma _ {1} $,  
 
$  i \sigma _ {2} $,  
 
$  i \sigma _ {3} $
 
form a four-dimensional subalgebra of the algebra of complex $  ( 2 \times 2) $-
 
matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries $  \mathop{\rm SU} ( 2) $.  
 
In this case they are generators of a $  2 $-
 
dimensional representation of $  \mathop{\rm SU} ( 2) $
 
and are denoted by $  \tau _ {1} $,  
 
$  \tau _ {2} $
 
and $  \tau _ {3} $.  
 
Sometimes it is convenient to use the linear combinations
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186032.png" /></td> </tr></table>
\tau  ^ {+}  =
 
\frac{1}{2}
 
( \tau _ {1} + i \tau _ {2} )  = \
 
\left (
 
  
In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices $  S _  \alpha  $
+
In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186033.png" /> related by means of the following identities:
related by means of the following identities:
 
  
$$ \tag{1 }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
S _ {0} S _ {0}  ^  \star  + \sigma _ {0}  = 0; \ \
 
S _ {i} S _ {0}  ^  \star  = \sigma _ {i} ,\ \
 
i = 1, 2, 3,
 
$$
 
  
where the symbol $  \star $
+
where the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186035.png" /> denotes complex conjugation. The matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186036.png" /> satisfy the commutator relations
denotes complex conjugation. The matrices $  S _  \alpha  $
 
satisfy the commutator relations
 
  
$$ \tag{2 }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
S _  \alpha  S _  \beta  ^  \star  + S _  \beta  S _  \alpha  ^  \star  = 2 \eta _ {\alpha , \beta }  ,
 
$$
 
  
where $  \eta _ {\alpha , \beta }  $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186038.png" /> are the components of the metric tensor of the Minkowski space of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186039.png" />. The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:
are the components of the metric tensor of the Minkowski space of signature $  + 2 $.  
 
The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186040.png" /></td> </tr></table>
S _  \alpha  S _  \beta  ^  \star  + S _  \beta  S _  \alpha  ^  \star  = 2g _ {\alpha \beta }  ,
 
$$
 
  
where $  g _ {\alpha \beta }  $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186041.png" /> are the components of the metric tensor of the curved space.
are the components of the metric tensor of the curved space.
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Pauli,  , ''Works on quantum theory'' , '''1–2''' , Moscow  (1975–1977)  (In Russian; translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.F. Nelina,  "Physics of elementary particles" , Moscow  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Bril,  J.A. Wheeler,  , ''The latest problems on gravitation'' , Moscow  (1961)  pp. 381–427  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Pauli,  , ''Works on quantum theory'' , '''1–2''' , Moscow  (1975–1977)  (In Russian; translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.F. Nelina,  "Physics of elementary particles" , Moscow  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Bril,  J.A. Wheeler,  , ''The latest problems on gravitation'' , Moscow  (1961)  pp. 381–427  (In Russian)</TD></TR></table>
 +
 +
  
 
====Comments====
 
====Comments====
 +
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Pauli,  "Zur Quantenmechanik des magnetischen Elektrons"  ''Z. Phys.'' , '''43''' :  601</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Pauli (ed.) , ''Handbuch der Physik'' , '''24''' , Springer  (1933)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.M. Wald,  "General relativity" , Univ. Chicago Press  (1984)  pp. Chapt. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y. Choquet-Bruhat,  C. DeWitt-Morette,  M. Dillard-Bleick,  "Analysis, manifolds and physics" , North-Holland  (1982)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Pauli,  "Zur Quantenmechanik des magnetischen Elektrons"  ''Z. Phys.'' , '''43''' :  601</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Pauli (ed.) , ''Handbuch der Physik'' , '''24''' , Springer  (1933)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.M. Wald,  "General relativity" , Univ. Chicago Press  (1984)  pp. Chapt. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y. Choquet-Bruhat,  C. DeWitt-Morette,  M. Dillard-Bleick,  "Analysis, manifolds and physics" , North-Holland  (1982)  (Translated from French)</TD></TR></table>

Revision as of 14:52, 7 June 2020

Certain special constant Hermitian -matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin () and magnetic moment of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units ) and can be obtained from the Dirac equation for . In explicit form the Pauli matrices are:

Their eigen values are . The Pauli matrices satisfy the following algebraic relations:

Together with the unit matrix

the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions , , and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle around an axis with a directed unit vector , a spinor is transformed according to the formula

From the Pauli matrices one can form the Dirac matrices , :

The real linear combinations of , , , form a four-dimensional subalgebra of the algebra of complex -matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. Quaternion. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries . In this case they are generators of a -dimensional representation of and are denoted by , and . Sometimes it is convenient to use the linear combinations

In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices related by means of the following identities:

(1)

where the symbol denotes complex conjugation. The matrices satisfy the commutator relations

(2)

where are the components of the metric tensor of the Minkowski space of signature . The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:

where are the components of the metric tensor of the curved space.

References

[1] W. Pauli, , Works on quantum theory , 1–2 , Moscow (1975–1977) (In Russian; translated from German)
[2] N.F. Nelina, "Physics of elementary particles" , Moscow (1977) (In Russian)
[3] D. Bril, J.A. Wheeler, , The latest problems on gravitation , Moscow (1961) pp. 381–427 (In Russian)


Comments

References

[a1] W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" Z. Phys. , 43 : 601
[a2] W. Pauli (ed.) , Handbuch der Physik , 24 , Springer (1933)
[a3] R.M. Wald, "General relativity" , Univ. Chicago Press (1984) pp. Chapt. 4
[a4] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1982) (Translated from French)
How to Cite This Entry:
Pauli matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pauli_matrices&oldid=49360
This article was adapted from an original article by V.G. Krechet (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article