Namespaces
Variants
Actions

Difference between revisions of "Parseval equality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 22: Line 22:
  
 
$$ \tag{1 }
 
$$ \tag{1 }
\| x \|  ^ {2}  =  \sum _ { n= } 1 ^  \infty  | a _ {n} |  ^ {2} \| e _ {n} \|  ^ {2} ,
+
\| x \|  ^ {2}  =  \sum_{n=1} ^  \infty  | a _ {n} |  ^ {2} \| e _ {n} \|  ^ {2} ,
 
$$
 
$$
  
Line 33: Line 33:
  
 
$$  
 
$$  
\| x \|  ^ {2}  =  \sum _ { n= } 1 ^  \infty  | a _ {n} |  ^ {2} .
+
\| x \|  ^ {2}  =  \sum_{n=1} ^  \infty  | a _ {n} |  ^ {2} .
 
$$
 
$$
  
Line 61: Line 61:
  
 
$$ \tag{2 }
 
$$ \tag{2 }
( x, y)  =  \sum _ { n= } 1 ^  \infty  a _ {n} \overline{ {b _ {n} }}\; ,
+
( x, y)  =  \sum_{n=1} ^  \infty  a _ {n} \overline{ {b _ {n} }}\; ,
 
$$
 
$$
  
Line 94: Line 94:
 
f  \sim   
 
f  \sim   
 
\frac{a _ {0} }{2}
 
\frac{a _ {0} }{2}
  + \sum _ { n= } 1 ^  \infty   
+
  + \sum_{n=1} ^  \infty   
 
( a _ {n}  \cos  nx + b _ {n}  \sin  nx),
 
( a _ {n}  \cos  nx + b _ {n}  \sin  nx),
 
$$
 
$$
Line 106: Line 106:
  
 
\frac{a _ {0}  ^ {2} }{2}
 
\frac{a _ {0}  ^ {2} }{2}
  + \sum _ { n= } 1 ^  \infty  ( a _ {n}  ^ {2} + b _ {n}  ^ {2}
+
  + \sum_{n=1} ^  \infty  ( a _ {n}  ^ {2} + b _ {n}  ^ {2}
 
),
 
),
 
$$
 
$$
Line 118: Line 118:
 
g  \sim   
 
g  \sim   
 
\frac{a _ {0}  ^  \prime  }{2}
 
\frac{a _ {0}  ^  \prime  }{2}
  + \sum _ { n= } 1 ^  \infty   
+
  + \sum_{n=1} ^  \infty   
 
( a _ {n}  ^  \prime  \cos  nx + b _ {n}  ^  \prime  \sin  nx ),
 
( a _ {n}  ^  \prime  \cos  nx + b _ {n}  ^  \prime  \sin  nx ),
 
$$
 
$$
Line 130: Line 130:
  
 
\frac{1}{2}
 
\frac{1}{2}
  a _ {0} a _ {0}  ^  \prime  + \sum _ { n= } 1 ^  \infty  ( a _ {n} a _ {n}  ^  \prime  +
+
  a _ {0} a _ {0}  ^  \prime  + \sum_{n=1} ^  \infty  ( a _ {n} a _ {n}  ^  \prime  +
 
b _ {n} b _ {n}  ^  \prime  ).
 
b _ {n} b _ {n}  ^  \prime  ).
 
$$
 
$$
Line 145: Line 145:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Steklov,  "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse"  ''Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8'' , '''157'''  (1904)  pp. 1–32</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''2''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''2''' , MIR  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Kirillov,  A.D. Gvishiani,  "Theorems and problems in functional analysis" , Springer  (1982)  (Translated from Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Steklov,  "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse"  ''Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8'' , '''157'''  (1904)  pp. 1–32</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''2''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''2''' , MIR  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Kirillov,  A.D. Gvishiani,  "Theorems and problems in functional analysis" , Springer  (1982)  (Translated from Russian)</TD></TR>
====Comments====
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hewitt,  K.R. Stromberg,  "Real and abstract analysis" , Springer  (1965)</TD></TR>
 
+
</table>
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hewitt,  K.R. Stromberg,  "Real and abstract analysis" , Springer  (1965)</TD></TR></table>
 

Latest revision as of 12:50, 6 January 2024


An equality expressing the square of the norm of an element in a vector space with a scalar product in terms of the square of the moduli of the Fourier coefficients of this element in some orthogonal system. Thus, if $ X $ is a normed separable vector space with a scalar product $ ( , ) $, if $ \| \cdot \| $ is the corresponding norm and if $ \{ e _ {n} \} $ is an orthogonal system in $ X $, $ e _ {n} \neq 0 $, $ n = 1, 2 \dots $ then Parseval's equality for an element $ x \in X $ is

$$ \tag{1 } \| x \| ^ {2} = \sum_{n=1} ^ \infty | a _ {n} | ^ {2} \| e _ {n} \| ^ {2} , $$

where $ a _ {n} = ( x, e _ {n} )/( e _ {n} , e _ {n} ) $, $ n = 1, 2 \dots $ are the Fourier coefficients of $ x $ in the system $ \{ e _ {n} \} $. If $ \{ e _ {n} \} $ is orthonormal, then Parseval's equality has the form

$$ \| x \| ^ {2} = \sum_{n=1} ^ \infty | a _ {n} | ^ {2} . $$

The validity of Parseval's equality for a given element $ x \in X $ is a necessary and sufficient condition for its Fourier series in the orthogonal system $ \{ e _ {n} \} $ to converge to $ x $ in the norm of $ X $. The validity of Parseval's equality for every element $ x \in X $ is a necessary and sufficient condition for the orthogonal system $ \{ e _ {n} \} $ to be complete in $ X $( cf. Complete system). This implies, in particular, that:

1) if $ X $ is a separable Hilbert space (cf. Hilbert space) and $ \{ e _ {n} \} $ is an orthogonal basis of it, then Parseval's equality holds for $ \{ e _ {n} \} $ for every $ x \in X $;

2) if $ X $ is a separable Hilbert space, $ x , y \in X $, if $ \{ e _ {n} \} $ is an orthonormal basis of $ X $ and if $ a _ {n} = ( x, e _ {n} ) $ and $ b _ {n} = ( y, e _ {n} ) $ are the Fourier coefficients of $ x $ and $ y $, then

$$ \tag{2 } ( x, y) = \sum_{n=1} ^ \infty a _ {n} \overline{ {b _ {n} }}\; , $$

the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [1].

Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If $ \{ e _ \alpha \} $, $ \alpha \in \mathfrak A $( $ \mathfrak A $ is a certain index set), is a complete orthonormal system in a Hilbert space $ X $, then for any element $ x \in X $ Parseval's equality holds:

$$ ( x, x) = \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , $$

and the sum on the right-hand side is to be understood as

$$ \sup _ {\mathfrak A _ {0} } \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , $$

where the supremum is taken over all finite subsets $ \mathfrak A _ {0} $ of $ \mathfrak A $.

When $ X = L _ {2} [- \pi , \pi ] $, the space of real-valued functions with Lebesgue-integrable squares on $ [- \pi , \pi ] $, and $ f \in L _ {2} [- \pi , \pi ] $, then one may take the trigonometric system as a complete orthogonal system and

$$ f \sim \frac{a _ {0} }{2} + \sum_{n=1} ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx), $$

where (1) takes the form

$$ \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ^ { 2 } ( t) dt = \ \frac{a _ {0} ^ {2} }{2} + \sum_{n=1} ^ \infty ( a _ {n} ^ {2} + b _ {n} ^ {2} ), $$

which is called the classical Parseval equality. It was proved in 1805 by M. Parseval.

If $ g \in L _ {2} [- \pi , \pi ] $ and

$$ g \sim \frac{a _ {0} ^ \prime }{2} + \sum_{n=1} ^ \infty ( a _ {n} ^ \prime \cos nx + b _ {n} ^ \prime \sin nx ), $$

then an equality similar to (2) looks as follows:

$$ \tag{3 } \frac{1} \pi \int\limits _ {- \pi } ^ \pi f( t) g( t) dt = \ \frac{1}{2} a _ {0} a _ {0} ^ \prime + \sum_{n=1} ^ \infty ( a _ {n} a _ {n} ^ \prime + b _ {n} b _ {n} ^ \prime ). $$

Two classes $ K $ and $ K ^ \prime $ of real-valued functions defined on $ [- \pi , \pi ] $ and such that for all $ f \in K $ and $ g \in K ^ \prime $ Parseval's equality (3) holds are called complementary. An example of complementary classes are the spaces $ L _ {p} [- \pi , \pi ] $ and $ L _ {q} [- \pi , \pi ] $, $ p ^ {-} 1 + q ^ {-} 1 = 1 $, $ 1 < p < + \infty $.

References

[1] V.A. Steklov, "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse" Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8 , 157 (1904) pp. 1–32
[2] S.M. Nikol'skii, "A course of mathematical analysis" , 2 , MIR (1977) (Translated from Russian)
[3] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 2 , MIR (1982) (Translated from Russian)
[4] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[5] A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988)
[6] A.A. Kirillov, A.D. Gvishiani, "Theorems and problems in functional analysis" , Springer (1982) (Translated from Russian)
[a1] E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)
How to Cite This Entry:
Parseval equality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parseval_equality&oldid=48131
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article