Namespaces
Variants
Actions

Difference between revisions of "Parallelotope"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
p0714601.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/P071/P.0701460 Parallelotope
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A set of points whose radius vectors have the form
 
A set of points whose radius vectors have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714601.png" /></td> </tr></table>
+
$$
 +
\mathbf h  = \sum _ { i= } 1 ^ { p }  x  ^ {i} \mathbf a _ {i} ,
 +
$$
  
with the possible values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714602.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714603.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714604.png" /> are fixed vectors in an [[Affine space|affine space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714605.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714606.png" />. They are called the generators of the parallelotope and coincide with some of the edges of the parallelotope. All remaining edges of the parallelotope are parallel to them. If the generators of the parallelotope are linearly independent (dependent), then the parallelotope is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714608.png" />-dimensional, or non-degenerate (degenerate). Degenerate parallelotopes are parallel projections of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p0714609.png" />-dimensional parallelotope onto a plane of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146010.png" />. A non-degenerate parallelotope determines a supporting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146011.png" />-dimensional plane. Such a parallelotope for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146012.png" /> is a [[Parallelogram|parallelogram]], and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146013.png" /> is a [[Parallelopipedon|parallelopipedon]].
+
with the possible values 0 \leq  x  ^ {i} \leq  1 $,  
 +
$  1 \leq  i \leq  p $.  
 +
Here $  \mathbf a _ {1} \dots \mathbf a _ {p} $
 +
are fixed vectors in an [[Affine space|affine space]] $  A $
 +
of dimension $  n $.  
 +
They are called the generators of the parallelotope and coincide with some of the edges of the parallelotope. All remaining edges of the parallelotope are parallel to them. If the generators of the parallelotope are linearly independent (dependent), then the parallelotope is called p $-
 +
dimensional, or non-degenerate (degenerate). Degenerate parallelotopes are parallel projections of some p $-
 +
dimensional parallelotope onto a plane of dimension $  k \leq  p- 1 $.  
 +
A non-degenerate parallelotope determines a supporting p $-
 +
dimensional plane. Such a parallelotope for $  p= 2 $
 +
is a [[Parallelogram|parallelogram]], and for $  p= 3 $
 +
is a [[Parallelopipedon|parallelopipedon]].
  
Two non-degenerate parallelotopes are said to be parallel if their supporting planes are parallel. For parallel parallelotopes it is possible to compare their <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146014.png" />-dimensional  "volume"  (although there need not be a metric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146015.png" />). For the numerical measure of the ratio of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146016.png" />-dimensional  "volume"  of the parallelotope with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146017.png" /> to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146018.png" />-dimensional  "volume"  of the parallel parallelotope with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146019.png" />, the scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146020.png" /> is used, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146021.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146022.png" />-matrix which transforms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146023.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146024.png" />, i.e.
+
Two non-degenerate parallelotopes are said to be parallel if their supporting planes are parallel. For parallel parallelotopes it is possible to compare their p $-
 +
dimensional  "volume"  (although there need not be a metric in $  A $).  
 +
For the numerical measure of the ratio of the p $-
 +
dimensional  "volume"  of the parallelotope with generators $  \mathbf a _ {1} \dots \mathbf a _ {p} $
 +
to the p $-
 +
dimensional  "volume"  of the parallel parallelotope with generators $  \mathbf b _ {1} \dots \mathbf b _ {p} $,  
 +
the scalar $  \mathop{\rm det} ( x _ {j}  ^ {i} ) $
 +
is used, where $  ( x _ {j}  ^ {i} ) $
 +
is the $  ( p \times p) $-
 +
matrix which transforms $  ( \mathbf b _ {1} \dots \mathbf b _ {p} ) $
 +
to $  ( \mathbf a _ {1} \dots \mathbf a _ {p} ) $,  
 +
i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146025.png" /></td> </tr></table>
+
$$
 +
\mathbf a _ {j}  = \sum _ { i= } 1 ^ { p }  x _ {j}  ^ {i} \mathbf b _ {i} ,\ \
 +
1 \leq  j \leq  p.
 +
$$
  
If an [[Inner product|inner product]] is defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146026.png" />, then the square of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146027.png" />-dimensional volume of the parallelotope with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146028.png" /> is equal to the [[Determinant|determinant]] of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146029.png" />-dimensional [[Gram matrix|Gram matrix]] with entries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071460/p07146030.png" /> (cf. also [[Gram determinant|Gram determinant]]).
+
If an [[Inner product|inner product]] is defined in $  A $,  
 +
then the square of the p $-
 +
dimensional volume of the parallelotope with generators $  \mathbf a _ {1} \dots \mathbf a _ {p} $
 +
is equal to the [[Determinant|determinant]] of the $  ( p \times p) $-
 +
dimensional [[Gram matrix|Gram matrix]] with entries $  ( \mathbf a _ {i} , \mathbf a _ {j} ) $(
 +
cf. also [[Gram determinant|Gram determinant]]).
  
 
The concept of a parallelotope is closely connected with the concept of a [[Poly-vector|poly-vector]].
 
The concept of a parallelotope is closely connected with the concept of a [[Poly-vector|poly-vector]].
Line 15: Line 59:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.A. Shirokov,  "Tensor calculus. Tensor algebra" , Kazan'  (1961)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D.V. Beklemishev,  "A course of analytical geometry and linear algebra" , Moscow  (1971)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  C. Pisot,  M. Zamansky,  "Mathématiques générales: algèbre-analyse" , Dunod  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.A. Shirokov,  "Tensor calculus. Tensor algebra" , Kazan'  (1961)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D.V. Beklemishev,  "A course of analytical geometry and linear algebra" , Moscow  (1971)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  C. Pisot,  M. Zamansky,  "Mathématiques générales: algèbre-analyse" , Dunod  (1966)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 08:05, 6 June 2020


A set of points whose radius vectors have the form

$$ \mathbf h = \sum _ { i= } 1 ^ { p } x ^ {i} \mathbf a _ {i} , $$

with the possible values $ 0 \leq x ^ {i} \leq 1 $, $ 1 \leq i \leq p $. Here $ \mathbf a _ {1} \dots \mathbf a _ {p} $ are fixed vectors in an affine space $ A $ of dimension $ n $. They are called the generators of the parallelotope and coincide with some of the edges of the parallelotope. All remaining edges of the parallelotope are parallel to them. If the generators of the parallelotope are linearly independent (dependent), then the parallelotope is called $ p $- dimensional, or non-degenerate (degenerate). Degenerate parallelotopes are parallel projections of some $ p $- dimensional parallelotope onto a plane of dimension $ k \leq p- 1 $. A non-degenerate parallelotope determines a supporting $ p $- dimensional plane. Such a parallelotope for $ p= 2 $ is a parallelogram, and for $ p= 3 $ is a parallelopipedon.

Two non-degenerate parallelotopes are said to be parallel if their supporting planes are parallel. For parallel parallelotopes it is possible to compare their $ p $- dimensional "volume" (although there need not be a metric in $ A $). For the numerical measure of the ratio of the $ p $- dimensional "volume" of the parallelotope with generators $ \mathbf a _ {1} \dots \mathbf a _ {p} $ to the $ p $- dimensional "volume" of the parallel parallelotope with generators $ \mathbf b _ {1} \dots \mathbf b _ {p} $, the scalar $ \mathop{\rm det} ( x _ {j} ^ {i} ) $ is used, where $ ( x _ {j} ^ {i} ) $ is the $ ( p \times p) $- matrix which transforms $ ( \mathbf b _ {1} \dots \mathbf b _ {p} ) $ to $ ( \mathbf a _ {1} \dots \mathbf a _ {p} ) $, i.e.

$$ \mathbf a _ {j} = \sum _ { i= } 1 ^ { p } x _ {j} ^ {i} \mathbf b _ {i} ,\ \ 1 \leq j \leq p. $$

If an inner product is defined in $ A $, then the square of the $ p $- dimensional volume of the parallelotope with generators $ \mathbf a _ {1} \dots \mathbf a _ {p} $ is equal to the determinant of the $ ( p \times p) $- dimensional Gram matrix with entries $ ( \mathbf a _ {i} , \mathbf a _ {j} ) $( cf. also Gram determinant).

The concept of a parallelotope is closely connected with the concept of a poly-vector.

References

[1] P.A. Shirokov, "Tensor calculus. Tensor algebra" , Kazan' (1961) (In Russian)
[2] D.V. Beklemishev, "A course of analytical geometry and linear algebra" , Moscow (1971) (In Russian)
[3] C. Pisot, M. Zamansky, "Mathématiques générales: algèbre-analyse" , Dunod (1966)

Comments

Parallelotopes are special types of zonotopes (cf. Zonohedron). They play a basic role in the geometry of numbers and in the theory of lattice covering and packing.

References

[a1] P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)
[a2] B. Grünbaum, "Convex polytopes" , Wiley (1967)
How to Cite This Entry:
Parallelotope. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parallelotope&oldid=16825
This article was adapted from an original article by L.P. Kuptsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article