Namespaces
Variants
Actions

Okubo algebra

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Discovered by S. Okubo [a2] when searching for an algebraic structure to model $\operatorname { su } ( 3 )$ particle physics. Okubo looked for an algebra that is $8$-dimensional over the complex numbers, power-associative and, unlike the octonion algebra, has the Lie algebra $A _ { 2 }$ as both its derivation algebra and minus algebra. His algebra provides an important example of a division algebra that is $8$-dimensional over the real numbers with a norm permitting composition that is not alternative. For more information on these algebras, their generalizations and the physics, see [a3], [a5], [a4], [a7], and [a6].

Following Okubo, [a7], let $M$ be the set of all $3 \times 3$ traceless Hermitian matrices. The Okubo algebra $P _ { 8 }$ is the vector space over the complex numbers spanned by the set $M$ with product $*$ defined by

\begin{equation*} X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y ), \end{equation*}

where $X Y$ denotes the usual matrix product of $X$ and $Y$, $\operatorname { Tr } ( X Y )$ is the trace of the matrix $X Y$ (cf. also Trace of a square matrix) and the constants $\mu$ and $\nu$ satisfy $3 \mu \nu = \mu + \nu = 1$, that is, $\mu = \overline { \nu } = ( 3 \pm i \sqrt { 3 } ) / 6$. In the discussion below, $\mu = ( 3 + i \sqrt { 3 } ) / 6$. The algebra $P _ { 8 }$ is not a division algebra; however, it contains a division algebra. The real vector space spanned by the set $M$ is a subring $\widetilde { P _ { 8 } }$ of $P _ { 8 }$ under the product $*$ and is a division algebra over the real numbers. Both the algebras $P _ { 8 }$ and $\widetilde { P _ { 8 } }$ are $8$-dimensional over their respective fields of scalars.

An explicit construction of the algebra $P _ { 8 }$ can be given in terms of the following basis of $3 \times 3$ traceless Hermitian matrices, introduced by M. Gell-Mann [a1]:

\begin{equation*} \lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \end{equation*}

\begin{equation*} \lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right), \end{equation*}

\begin{equation*} \lambda _ { 7 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - i } \\ { 0 } & { i } & { 0 } \end{array} \right) , \lambda _ { 8 } = \left( \begin{array} { c c c } { \frac { 1 } { \sqrt { 3 } } } & { 0 } & { 0 } \\ { 0 } & { \frac { 1 } { \sqrt { 3 } } } & { 0 } \\ { 0 } & { 0 } & { \frac { - 2 } { \sqrt { 3 } } } \end{array} \right). \end{equation*}

The elements $e _ { j } = \sqrt { 3 } \lambda _ { j }$ ($j = 1 , \dots , 8$) form an orthonormal basis; the multiplication follows from

\begin{equation*} e _ { j } * e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }. \end{equation*}

The constants $d_{ j k l}$ and $f _ { j k l }$ must satisfy

\begin{equation*} d _ { j k l } = \frac { 1 } { 4 } \operatorname { Tr } [ ( \gamma _ { j } \gamma _ { k } + \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ], \end{equation*}

\begin{equation*} f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ]. \end{equation*}

A partial tabulation of the values of $d_{ j k l}$ and $f _ { j k l }$ can be found in [a1].

The norm $\mathbf{N} ( X )$ of $X = \sum _ { j = 1 } ^ { 8 } X _ { j } e_j$ is ${\bf N} ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$. In the case of the algebra $\widetilde { P _ { 8 } }$, all the $X_j$ are real and $\mathbf{N} ( X ) = 0$ if and only if $X = 0$.

The elements

\begin{equation*} Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 } \end{equation*}

generate a $4$-dimensional subalgebra, denoted by $P _ { 4 }$. Likewise, any non-identity element $\xi $ will generate a $2$-dimensional subalgebra.

In addition to the above properties, each algebra will be flexible, power associative and Lie-admissible (cf. also Flexible identity; Lie-admissible algebra; Algebra with associative powers); none of these algebras will have a unit element.

References

[a1] M. Gell–Mann, "Symmetries of baryons and mesons" Phys. Rev. , 125 (1962) pp. 1067–1084
[a2] S. Okubo, "Pseudo-quaternion and pseudo-octonion algebras" Hadronic J. , 1 (1978) pp. 1250–1278. Zbl 0417.17011
[a3] S. Okubo, "Deformation of the Lie-admissible pseudo-octonion algebra into the octonion algebra" Hadronic J. , 1 (1978) pp. 1383–1431. Zbl 0417.17012
[a4] S. Okubo, "Octonion as traceless $3 \times 3$ matrices via a flexible Lie-admissible algebra" Hadronic J. , 1 (1978) pp. 1432–1465. Zbl 0417.17013
[a5] S. Okubo, "A generalization of Hurwitz theorem and flexible Lie-admissible algebras" Hadronic J. , 3 (1978) pp. 1–52. Zbl 0418.17004
[a6] S. Okubo, H.C. Myung, "Some new classes of division algebras" J. Algebra , 67 (1980) pp. 479–490
[a7] S. Okubo, "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press (1995)
How to Cite This Entry:
Okubo algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Okubo_algebra&oldid=51693
This article was adapted from an original article by G.P. Wene (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article