Namespaces
Variants
Actions

Odlyzko bounds

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Effective lower bounds for $M ( r _ { 1 } , r _ { 2 } )$, the minimal value of the discriminant $| d ( K ) |$ of algebraic number fields $K$ having signature $( r _ { 1 } , r _ { 2 } )$ (i.e. having $r_1$ real and $2r_2$ non-real conjugates), obtained in 1976 by A.M. Odlyzko. See also Algebraic number; Number field.

The first such bound was proved in 1891 by H. Minkowski [a4], who showed

\begin{equation} \tag{a1} M ( r _ { 1 } , r _ { 2 } ) > \left( \frac { \pi } { 4 } \right) ^ { 2 r _ { 2 } } \left( \frac { n ^ { n } } { n ! } \right) ^ { 2 }, \end{equation}

with $n = r _ { 1 } + 2 r _ { 2 }$. He obtained it using methods from the geometry of numbers; the same method was used later by several authors to improve (a1) (see [a5] for the strongest result obtained in this way).

In 1974, H.M. Stark ([a11], [a12]) observed that Hadamard factorization of the Dedekind zeta-function $\zeta _ { K } ( s )$ leads to a formula expressing $\operatorname{log} | d ( K ) |$ by the zeros of $\zeta _ { K } ( s )$ and the value of its logarithmic derivative at a complex number $s _ { 0 } \neq 0,1$ with $\zeta_{ K } ( s _ { 0 } ) \neq 0$. He used this formula with a proper choice of $s_0$ to deduce lower bounds for $M ( r _ { 1 } , r _ { 2 } )$ which were essentially stronger than Minkowski's bound, but did not reach the bounds obtained by geometrical methods.

In 1976, Odlyzko [a7] (cf. [a9]) modified Stark's formula and obtained the following important improvement of (a1):

$$M(r_1,r_2)^{1/n} \geq 60^{r_1/n} 22^{r_2/n} - \epsilon ( n ) $$

with $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$.

In particular, one has

\begin{equation*} D = \liminf _ { n \rightarrow \infty } M ( r _ { 1 } , r _ { 2 } ) ^ { 1 / n } \geq 22. \end{equation*}

If the extended Riemann hypothesis is assumed (cf. also Riemann hypotheses; Zeta-function), then the constants $60$ and $22$ in (a2) can be replaced by $180$ and $41$, respectively. For small degrees the bound (a2) can be improved (see [a2], [a10]) and several exact values of $M ( r _ { 1 } , r _ { 2 } )$ are known.

On the other hand, it has been shown in [a13], as a consequence of their solution of the class field tower problem (cf. also Tower of fields; Class field theory), that $D$ is finite. The best explicit upper bound for it, $D \leq 92.4$, is due to J. Martinet [a1], who obtained this as a corollary of his constructions of infinite $2$-class towers of suitable fields.

For surveys of this topic, see [a9], [a3] and [a8].

References

[a1] J. Martinet, "Tours de corps de classes et estimations de discriminants" Invent. Math. , 44 (1978) pp. 65–73
[a2] J. Martinet, "Petits discriminants" Ann. Inst. Fourier (Grenoble) , 29 : fasc.1 (1979) pp. 159–170 Zbl 0387.12006
[a3] J. Martinet, "Petits discriminants des corps de nombres" , Journ. Arithm. 1980 , Cambridge Univ. Press (1982) pp. 151–193
[a4] H. Minkowski, "Théorèmes arithmétiques" C.R. Acad. Sci. Paris , 112 (1891) pp. 209–212 (Gesammelte Abh. I (1911), 261-263, Leipzig–Berlin)
[a5] H.P. Mulholland, "On the product of $n$ complex homogeneous linear forms" J. London Math. Soc. , 35 (1960) pp. 241–250
[a6] A. Odlyzko, "Some analytic estimates of class numbers and discriminants" Invent. Math. , 29 (1975) pp. 275–286
[a7] A. Odlyzko, "Lower bounds for discriminants of number fields" Acta Arith. , 29 (1976) pp. 275–297 (II: Tôhoku Math. J., 29 (1977), 275-286)
[a8] A. Odlyzko, "Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results" Sém. de Théorie des Nombres, Bordeaux , 2 (1990) pp. 119–141
[a9] G. Poitou, "Minoration de discriminants (d'aprés A.M. Odlyzko)" , Sém. Bourbaki (1975/76) , Lecture Notes in Mathematics , 567 , Springer (1977) pp. 136–153
[a10] G. Poitou, "Sur les petits discriminants" Sém. Delange–Pisot–Poitou , 18 : 6 (1976/77)
[a11] H.M. Stark, "Some effective cases of the Brauer–Siegel theorem" Invent. Math. , 23 (1974) pp. 135–152 Zbl 0278.12005
[a12] H.M. Stark, "The analytic theory of numbers" Bull. Amer. Math. Soc. , 81 (1975) pp. 961–972,
[a13] E.S. Golod, I.R. Shafarevich, "On the class-field tower" Izv. Akad. Nauk. SSSR , 28 (1964) pp. 261–272 (In Russian)
How to Cite This Entry:
Odlyzko bounds. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Odlyzko_bounds&oldid=54662
This article was adapted from an original article by Władysław Narkiewicz (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article