Namespaces
Variants
Actions

Difference between revisions of "Normal form (for singularities)"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 18: Line 18:
 
A similar question may be posed about homomorphisms of finitely generated modules over rings. For some rings the normal form is known as the [[Normal_form_(for_matrices)#The_Smith_normal_form|Smith normal form]].
 
A similar question may be posed about homomorphisms of finitely generated modules over rings. For some rings the normal form is known as the [[Normal_form_(for_matrices)#The_Smith_normal_form|Smith normal form]].
 
===Linear operators (self-maps)===  
 
===Linear operators (self-maps)===  
The  matrix of a linear operator of an $n$-dimensional space over $\Bbbk$  ''into itself'' is transformed by a change of basis in a more  restrictive way compared to (LR): if the source and the target spaces coincide, then necessarily $n=m$ and  $L=H^{-1}$. The  corresponding equivalence is called [[similarity]] (sometimes ''conjugacy'' or ''linear conjugacy'') of matrices,  and the normal form is known as the [[Jordan normal form]], see also [[Normal_form_(for_matrices)#The_Jordan_normal_form here]]. This normal form is characterized by a specific block diagonal structure and explicitly features the [[Eigen value|eigenvalues]] on the  diagonal. Note that this form holds only over an algebraically closed  field $\Bbbk$, e.g., $\Bbbk=\CC$.
+
The  matrix of a linear operator of an $n$-dimensional space over $\Bbbk$  ''into itself'' is transformed by a change of basis in a more  restrictive way compared to (LR): if the source and the target spaces coincide, then necessarily $n=m$ and  $L=H^{-1}$. The  corresponding equivalence is called [[similarity]] (sometimes ''conjugacy'' or ''linear conjugacy'') of matrices,  and the normal form is known as the [[Jordan normal form]], see also [[Normal_form_(for_matrices)#The_Jordan_normal_form|here]]. This normal form is characterized by a specific block diagonal structure and explicitly features the [[Eigen value|eigenvalues]] on the  diagonal. Note that this form holds only over an algebraically closed  field $\Bbbk$, e.g., $\Bbbk=\CC$.
 +
 
 
===Quadratic forms on linear spaces===
 
===Quadratic forms on linear spaces===
 
A  quadratic form $Q\colon\Bbbk^n\Bbbk$, $(x_1,\dots,x_n)\mapsto \sum  a_{i,j}^n a_{ij}x_ix_j$ with a symmetric matrix $Q$ after a ''linear  invertible'' change of coordinates will have a new matrix $Q'=HQH^*$  (the asterisk means the transpose):
 
A  quadratic form $Q\colon\Bbbk^n\Bbbk$, $(x_1,\dots,x_n)\mapsto \sum  a_{i,j}^n a_{ij}x_ix_j$ with a symmetric matrix $Q$ after a ''linear  invertible'' change of coordinates will have a new matrix $Q'=HQH^*$  (the asterisk means the transpose):

Revision as of 10:45, 20 April 2012

Any equivalence relation $\sim$ on a set of objects $\mathscr M$ defines the quotient set $\mathscr M/\sim$ whose elements are equivalence classes: the equivalence class of an element $M\in\mathscr M$ is denoted $[M]=\{M'\in\mathscr M:~M'\sim M\}$. Description of the quotient set is referred to as the classification problem for $\mathscr M$ with respect to the equivalence relation. The normal form of an object $M$ is a "selected representative" from the class $[M]$, usually possessing some nice properties (simplicity, integrability etc). Often (although not always) one requires that two distinct representatives ("normal forms") are not equivalent to each other: $M_1\ne M_2\iff M_1\not\sim M_2$.

The most typical classification problems appear when there is a group $G$ acting on $\mathscr M$: then the natural equivalence relation arises, $M_1\sim M_2\iff \exists g\in G:~g\cdot M_1=M_2$. If both $\mathscr M$ and $G$ are finite-dimensional spaces, the classification problem is usually much easier than in the case of infinite-dimensional spaces.

Below follows a list (very partial) of the most important classification problems in which normal forms are known and very useful.

Finite-dimensional classification problems

When the objects of classification form a finite-dimensional variety, in most cases it is a subvariety of matrices, with the equivalence relation induced by transformations reflecting the change of basis.

Linear maps between finite-dimensional linear spaces

Let $\Bbbk$ be a field. A linear map from $\Bbbk^m$ to $\Bbbk^n$ is represented by an $n\times m$ matrix over $\Bbbk$ ($m$ rows and $n$ columns). A different choice of bases in the source and the target space results in a matrix $M$ being replaced by another matrix $M'=HML$, where $H$ (resp., $L$) is an invertible $m\times m$ (resp., $n\times n$) matrix of transition between the bases, $$ M\sim M'\iff\exists H\in\operatorname{GL}(m,\Bbbk),\ L\in \operatorname{GL}(n,\Bbbk):\quad M'=HML. \tag{LR} $$

Obviously, this binary relation $\sim$ is an equivalence (symmetric, reflexive and transitive), called left-right linear equivalence. Each matrix $M$ is left-right equivalent to a matrix (of the same size) with $k\leqslant\min(n,m)$ units on the diagonal and zeros everywhere else. The number $k$ is a complete invariant of equivalence (matrices of different ranks are not equivalent) and is called the rank of a matrix.

A similar question may be posed about homomorphisms of finitely generated modules over rings. For some rings the normal form is known as the Smith normal form.

Linear operators (self-maps)

The matrix of a linear operator of an $n$-dimensional space over $\Bbbk$ into itself is transformed by a change of basis in a more restrictive way compared to (LR): if the source and the target spaces coincide, then necessarily $n=m$ and $L=H^{-1}$. The corresponding equivalence is called similarity (sometimes conjugacy or linear conjugacy) of matrices, and the normal form is known as the Jordan normal form, see also here. This normal form is characterized by a specific block diagonal structure and explicitly features the eigenvalues on the diagonal. Note that this form holds only over an algebraically closed field $\Bbbk$, e.g., $\Bbbk=\CC$.

Quadratic forms on linear spaces

A quadratic form $Q\colon\Bbbk^n\Bbbk$, $(x_1,\dots,x_n)\mapsto \sum a_{i,j}^n a_{ij}x_ix_j$ with a symmetric matrix $Q$ after a linear invertible change of coordinates will have a new matrix $Q'=HQH^*$ (the asterisk means the transpose): $$ Q'\sim Q\iff \exists H\in\operatorname{GL}(n,\Bbbk):\ Q'=HQH^*.\tag{QL} $$ The normal form for this equivalence is diagonal, but the diagonal entries depend on the field:

  • Over $\RR$, the diagional entries can be all made $0$ or $\pm 1$. The number of entries of each type is an invariant of classification, called (or closely related) to the inertia index.
  • Over $\CC$, one can keep only zeros and units (not signed). The number of units is called the rank of a quadratic form; it is a complete invariant.

Quadratic forms on Euclidean spaces

This classification deals with real symmetric matrices representing quadratic forms, yet the condition (QL) is represented by a more restrictive condition that the conjugacy matrix $H$ is orthogonal (preserves the Euclidean scalar product): $$ Q'\sim Q\iff \exists H\in\operatorname{O}(n,\RR)=\{H\in\operatorname{GL}(n,\RR):\ HH^*=E\}:\ Q'=HQH^*.\tag{QE} $$ The normal form is diagonal, with the diagonal entries forming a complete system of invariants.

A similar set of normal forms exists for self-adjoint matrices conjugated by Hermitian matrices.

Conic sections in the real affine and projective plane

This problem reduces to classification of quadratic forms on $\RR^3$. An conic section is the intersection of the cone $\{Q(x,y,z)=0\}$ defined by a quadratic form on $\RR^3$, with the affine subspace $\{z=1\}$. Projective transformations are defined by linear invertible self-maps of $\RR^3$, respectively, the affine transformations consist of linear self-maps preserving the plane $\{z=0\}$ in the homogeneous coordinates (the "infinite line"). In addition, one can replace the form $Q$ by $\lambda Q$ with $\lambda\ne 0$. This defines two equivalence relations on the space of quadratic forms.

The list of normal forms for both classifications is follows from the normal form of quadratic forms:

Rank of $Q$ Projective curves Affine curves
3 $\varnothing=\{x^2+y^2=-1\}$, circle $\{x^2+y^2=1\}$ $\varnothing=\{x^2+y^2=-1\}$, circle $\{x^2+y^2=1\}$, parabola $\{y=x^2\}$, hyperbola $\{x^2-y^2=1\}$
2 point $\{x^2+y^2=0\}$, two lines $\{x^2-y^2=0\}$ point $\{x^2+y^2=0\}$, two crossing lines $\{x^2-y^2=0\}$,

two parallel lines $\{x^2=1\}$, $\varnothing=\{x^2=-1\}$

1 "double" line $\{x^2=0\}$ $\varnothing=\{1=0\}$, "double" line $\{x^2=0\}$

Infinite-dimensional classification problems

How to Cite This Entry:
Normal form (for singularities). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_form_(for_singularities)&oldid=24866