Namespaces
Variants
Actions

Difference between revisions of "Norm-residue symbol"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
''norm residue, Hilbert symbol''
 
''norm residue, Hilbert symbol''
  
A function that associates with an ordered pair of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673701.png" /> of the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673702.png" /> of a [[Local field|local field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673703.png" /> an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673704.png" /> that is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673705.png" />-th root of unity. This function can be defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673706.png" /> be a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673707.png" />-th root of unity. The maximal Abelian extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673708.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673709.png" /> with Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737010.png" /> of exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737011.png" /> is obtained by adjoining to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737012.png" /> the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737014.png" />. On the other hand, there is a canonical isomorphism (the fundamental isomorphism of local [[Class field theory|class field theory]])
+
A function that associates with an ordered pair of elements $x,y$ of the
 +
multiplicative group $K^*$ of a
 +
[[Local field|local field]] $K$ an element $(x,y)\in K^*$ that is an $n$-th root
 +
of unity. This function can be defined as follows. Let $\zeta_n\in K$ be a
 +
primitive $n$-th root of unity. The maximal Abelian extension $L$ of
 +
$K$ with Galois group $G(L/K)$ of exponent $n$ is obtained by adjoining to
 +
$K$ the roots $a^{1/n}$ for all $a\in K^*$. On the other hand, there is a canonical
 +
isomorphism (the fundamental isomorphism of local
 +
[[Class field theory|class field theory]])  
 +
$$\theta:K^*/{K^*}^n \to \mathrm{Gal}(L/K).$$
 +
The norm residue of
 +
the pair $(x,y)$ is defined by
 +
$$\theta(y)(x^{1/n}) = (x,y)x^{1/n}.$$
 +
D. Hilbert introduced the concept of
 +
a norm-residue symbol in the special case of quadratic fields with
 +
$n=2$. In
 +
[[#References|[4]]] there is an explicit definition of the norm
 +
residue using only local class field theory.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737015.png" /></td> </tr></table>
+
Properties of the symbol $(x,y)$:
  
The norm residue of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737016.png" /> is defined by
+
1) bilinearity: $(x_1x_2,y) = (x_1,y)(x_2,y),\quad (x,y_1y_2)=(x,y_1)(x,y_2)$;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737017.png" /></td> </tr></table>
+
2) skew-symmetry: $(x,y)(y,x)=1$;
  
D. Hilbert introduced the concept of a norm-residue symbol in the special case of quadratic fields with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737018.png" />. In [[#References|[4]]] there is an explicit definition of the norm residue using only local class field theory.
+
3) non-degeneracy: $(x,y)=1$ for all $x\in K^*$ implies $y\in {K^*}^n$; $(x,y)=1$ for all $y\in K^*$
 +
implies $x\in {K^*}^n$;
  
Properties of the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737019.png" />:
+
4) if $x+y=1$, then $(x,y)=1$;
  
1) bilinearity: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737021.png" />;
+
5) if $\sigma$ is an automorphism of $K$, then
 +
$$(\sigma x, \sigma y) = \sigma(x,y)$$
 +
6) let $K'$ be a finite
 +
extension of $K$, $a\in {K'}^*$
 +
and $b\in K^*$. Then
 +
$$(a,b) = (N_{K'/K}(a),b)$$
 +
where on the left-hand side
 +
the norm-residue symbol is regarded for $K'$ and on the right-hand side
 +
that for $K$, and where $N_{K'/K}$ is the
 +
[[Norm map|norm map]] from $K'$ into $K$;
  
2) skew-symmetry: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737022.png" />;
+
7) $(x,y)=1$ implies that $y$ is a norm in the extension $K(x^{1/n})$. (This explains
 +
the name of the symbol.)
  
3) non-degeneracy: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737023.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737024.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737025.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737026.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737027.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737028.png" />;
+
The function $(x,y)$ induces a non-degenerate bilinear pairing
 +
$$K^*/{K^*}^n \times K^*/{K^*}^n \to \mu(n)$$
 +
where
 +
$\mu(n)$ is the group of roots of unity generated by $\zeta_n$. Let $\Psi:K^*\times K^* \to A$ be a
 +
mapping into some Abelian group $A$ satisfying 1), 4) and the
 +
condition of continuity: For any $y\in K^*$ the set $\{x\in K^* | \Psi(x,y)=1\}$ is closed in $K^*$. The
 +
norm-residue symbol has the following universal property
 +
[[#References|[3]]]: If $n$ is the number of roots of unity in $K$,
 +
then there exists a homomorphism $\phi:\mu(n) \to A$ such that for any $x,y\in K^*$,
 +
$$\Psi(x,y) = \phi((x,y)).$$
 +
This
 +
property can serve as a basic axiomatic definition of the norm-residue
 +
symbol.
  
4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737030.png" />;
+
If $F$ is a
 +
[[Global field|global field]] and $K$ is the completion of $F$
 +
relative to a place $\nu$, then by the norm-residue symbol one also
 +
means the function $(x,y)_\nu$ defined over $F^*\times F^*$ that is obtained by
 +
composition of the (local) norm-residue symbol $(x,y)$ with the natural
 +
imbedding $F^*\to K^*$.
  
5) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737031.png" /> is an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737032.png" />, then
+
Often the norm-residue symbol is defined as an automorphism $\theta(x)$ of the
 
+
maximal Abelian extension of $K$ corresponding to an element $x\in K^*$ by
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737033.png" /></td> </tr></table>
+
local
 
+
[[Class field theory|class field theory]].
6) let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737034.png" /> be a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737037.png" />. Then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737038.png" /></td> </tr></table>
 
 
 
where on the left-hand side the norm-residue symbol is regarded for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737039.png" /> and on the right-hand side that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737040.png" />, and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737041.png" /> is the [[Norm map|norm map]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737042.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737043.png" />;
 
 
 
7) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737044.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737045.png" /> is a norm in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737046.png" />. (This explains the name of the symbol.)
 
 
 
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737047.png" /> induces a non-degenerate bilinear pairing
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737048.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737049.png" /> is the group of roots of unity generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737050.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737051.png" /> be a mapping into some Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737052.png" /> satisfying 1), 4) and the condition of continuity: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737053.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737054.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737055.png" />. The norm-residue symbol has the following universal property [[#References|[3]]]: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737056.png" /> is the number of roots of unity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737057.png" />, then there exists a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737058.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737059.png" />,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737060.png" /></td> </tr></table>
 
 
 
This property can serve as a basic axiomatic definition of the norm-residue symbol.
 
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737061.png" /> is a [[Global field|global field]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737062.png" /> is the completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737063.png" /> relative to a place <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737064.png" />, then by the norm-residue symbol one also means the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737065.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737066.png" /> that is obtained by composition of the (local) norm-residue symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737067.png" /> with the natural imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737068.png" />.
 
 
 
Often the norm-residue symbol is defined as an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737069.png" /> of the maximal Abelian extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737070.png" /> corresponding to an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737071.png" /> by local [[Class field theory|class field theory]].
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Koch,   "Galoissche Theorie der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737072.png" />-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor,   "Introduction to algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737073.png" />-theory" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.R. Shafarevich,   "A general reciprocity law" ''Mat. Sb.'' , '''26''' : 1 (1950) pp. 113–146 (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD>
 
+
<TD valign="top"> J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD>
 
+
</TR><TR><TD valign="top">[2]</TD>
 +
<TD valign="top"> H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD>
 +
</TR><TR><TD valign="top">[3]</TD>
 +
<TD valign="top"> J.W. Milnor, "Introduction to algebraic $K$-theory" , Princeton Univ. Press (1971)</TD>
 +
</TR><TR><TD valign="top">[4]</TD>
 +
<TD valign="top"> I.R. Shafarevich, "A general reciprocity law" ''Mat. Sb.'' , '''26''' : 1 (1950) pp. 113–146 (In Russian)</TD>
 +
</TR></table>
  
 
====Comments====
 
====Comments====
Line 56: Line 86:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Iwasawa,   "Local class field theory" , Oxford Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Neukirch,   "Class field theory" , Springer (1986) pp. Chapt. 4, Sect. 8</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD
 +
valign="top"> K. Iwasawa, "Local class field theory" , Oxford
 +
Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD
 +
valign="top"> J. Neukirch, "Class field theory" , Springer (1986)
 +
pp. Chapt. 4, Sect. 8</TD></TR></table>

Latest revision as of 21:24, 11 November 2011

norm residue, Hilbert symbol

A function that associates with an ordered pair of elements $x,y$ of the multiplicative group $K^*$ of a local field $K$ an element $(x,y)\in K^*$ that is an $n$-th root of unity. This function can be defined as follows. Let $\zeta_n\in K$ be a primitive $n$-th root of unity. The maximal Abelian extension $L$ of $K$ with Galois group $G(L/K)$ of exponent $n$ is obtained by adjoining to $K$ the roots $a^{1/n}$ for all $a\in K^*$. On the other hand, there is a canonical isomorphism (the fundamental isomorphism of local class field theory) $$\theta:K^*/{K^*}^n \to \mathrm{Gal}(L/K).$$ The norm residue of the pair $(x,y)$ is defined by $$\theta(y)(x^{1/n}) = (x,y)x^{1/n}.$$ D. Hilbert introduced the concept of a norm-residue symbol in the special case of quadratic fields with $n=2$. In [4] there is an explicit definition of the norm residue using only local class field theory.

Properties of the symbol $(x,y)$:

1) bilinearity: $(x_1x_2,y) = (x_1,y)(x_2,y),\quad (x,y_1y_2)=(x,y_1)(x,y_2)$;

2) skew-symmetry: $(x,y)(y,x)=1$;

3) non-degeneracy: $(x,y)=1$ for all $x\in K^*$ implies $y\in {K^*}^n$; $(x,y)=1$ for all $y\in K^*$ implies $x\in {K^*}^n$;

4) if $x+y=1$, then $(x,y)=1$;

5) if $\sigma$ is an automorphism of $K$, then $$(\sigma x, \sigma y) = \sigma(x,y)$$ 6) let $K'$ be a finite extension of $K$, $a\in {K'}^*$ and $b\in K^*$. Then $$(a,b) = (N_{K'/K}(a),b)$$ where on the left-hand side the norm-residue symbol is regarded for $K'$ and on the right-hand side that for $K$, and where $N_{K'/K}$ is the norm map from $K'$ into $K$;

7) $(x,y)=1$ implies that $y$ is a norm in the extension $K(x^{1/n})$. (This explains the name of the symbol.)

The function $(x,y)$ induces a non-degenerate bilinear pairing $$K^*/{K^*}^n \times K^*/{K^*}^n \to \mu(n)$$ where $\mu(n)$ is the group of roots of unity generated by $\zeta_n$. Let $\Psi:K^*\times K^* \to A$ be a mapping into some Abelian group $A$ satisfying 1), 4) and the condition of continuity: For any $y\in K^*$ the set $\{x\in K^* | \Psi(x,y)=1\}$ is closed in $K^*$. The norm-residue symbol has the following universal property [3]: If $n$ is the number of roots of unity in $K$, then there exists a homomorphism $\phi:\mu(n) \to A$ such that for any $x,y\in K^*$, $$\Psi(x,y) = \phi((x,y)).$$ This property can serve as a basic axiomatic definition of the norm-residue symbol.

If $F$ is a global field and $K$ is the completion of $F$ relative to a place $\nu$, then by the norm-residue symbol one also means the function $(x,y)_\nu$ defined over $F^*\times F^*$ that is obtained by composition of the (local) norm-residue symbol $(x,y)$ with the natural imbedding $F^*\to K^*$.

Often the norm-residue symbol is defined as an automorphism $\theta(x)$ of the maximal Abelian extension of $K$ corresponding to an element $x\in K^*$ by local class field theory.

References

[1] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)
[2] H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)
[3] J.W. Milnor, "Introduction to algebraic $K$-theory" , Princeton Univ. Press (1971)
[4] I.R. Shafarevich, "A general reciprocity law" Mat. Sb. , 26 : 1 (1950) pp. 113–146 (In Russian)

Comments

References

[a1] K. Iwasawa, "Local class field theory" , Oxford Univ. Press (1986)
[a2] J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. 4, Sect. 8
How to Cite This Entry:
Norm-residue symbol. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Norm-residue_symbol&oldid=12271
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article