Namespaces
Variants
Actions

Difference between revisions of "Non-measurable set"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
A set that is not a [[Measurable set|measurable set]]. In more detail: A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672001.png" /> belonging to a hereditary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672002.png" />-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672003.png" /> is non-measurable if
+
<!--
 +
n0672001.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/N067/N.0607200 Non\AAhmeasurable set
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672004.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672005.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672006.png" />-ring on which the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672007.png" /> is given, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672008.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n0672009.png" /> are the exterior and interior measures, respectively (see [[Measure|Measure]]).
+
A set that is not a [[Measurable set|measurable set]]. In more detail: A set  $  X $
 +
belonging to a hereditary  $  \sigma $-
 +
ring  $  H ( S) $
 +
is non-measurable if
 +
 
 +
$$
 +
\mu  ^ {*} ( X)  > \
 +
\mu _ {*} ( X) ;
 +
$$
 +
 
 +
here  $  S $
 +
is the $  \sigma $-
 +
ring on which the measure $  \mu $
 +
is given, and $  \mu  ^ {*} $
 +
and $  \mu _ {*} $
 +
are the exterior and interior measures, respectively (see [[Measure|Measure]]).
  
 
For an intuitive grasp of the concept of a non-measurable set, the following  "effective constructions"  are useful.
 
For an intuitive grasp of the concept of a non-measurable set, the following  "effective constructions"  are useful.
Line 9: Line 32:
 
Example 1. let
 
Example 1. let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720010.png" /></td> </tr></table>
+
$$
 +
= \{ {( x , y ) } : {0 \leq  x \leq  1 , 0 \leq  y \leq  1 } \}
 +
$$
  
be the unit square and define a measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720011.png" /> on the sets
+
be the unit square and define a measure $  \mu $
 +
on the sets
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720012.png" /></td> </tr></table>
+
$$
 +
\widehat{E}  = \{ {( x , y ) } : {x \in E , 0 \leq  y \leq  1 } \}
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720013.png" /> runs through the Lebesgue-measurable sets of measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720014.png" />, by setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720015.png" />. Then the set
+
where $  E $
 +
runs through the Lebesgue-measurable sets of measure $  m ( E) $,  
 +
by setting $  \mu ( \widehat{E}  ) = m ( E) $.  
 +
Then the set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720016.png" /></td> </tr></table>
+
$$
 +
= \{ {( x , y ) } : {0 \leq  x \leq  1 , y = 1 / 2 } \}
 +
$$
  
is non-measurable, since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720018.png" />.
+
is non-measurable, since $  \mu  ^ {*} ( X) = 1 $,  
 +
$  \mu _ {*} ( X) = 0 $.
  
 
The oldest and simplest construction of a non-measurable set is due to G. Vitali (1905).
 
The oldest and simplest construction of a non-measurable set is due to G. Vitali (1905).
  
Example 2. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720019.png" /> be the set of all rational numbers. Then a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720020.png" /> (called a Vitali set) having in accordance with the [[Axiom of choice|axiom of choice]] exactly one element in common with every set of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720022.png" /> is any real number, is non-measurable. No Vitali set has the [[Baire property|Baire property]].
+
Example 2. Let $  \mathbf Q $
 +
be the set of all rational numbers. Then a set $  X $(
 +
called a Vitali set) having in accordance with the [[Axiom of choice|axiom of choice]] exactly one element in common with every set of the form $  \mathbf Q + a $,  
 +
where $  a $
 +
is any real number, is non-measurable. No Vitali set has the [[Baire property|Baire property]].
  
Example 3. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720023.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720024.png" />) be the set of numbers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720026.png" /> is an irrational number, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720028.png" /> are integers with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720029.png" /> even (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720030.png" /> odd), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720031.png" /> be a set obtained by means of the axiom of choice from the equivalence classes of the set of real numbers under the relation:
+
Example 3. Let $  B $(
 +
respectively, $  C $)  
 +
be the set of numbers of the form n + m \xi $,  
 +
where $  \xi $
 +
is an irrational number, $  m $
 +
and n $
 +
are integers with n $
 +
even (respectively, n $
 +
odd), and let $  X _ {0} $
 +
be a set obtained by means of the axiom of choice from the equivalence classes of the set of real numbers under the relation:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720032.png" /></td> </tr></table>
+
$$
 +
x \sim y \  \textrm{ if } \  x - y \in A = B \cup C .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720033.png" />. Then for every measurable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720034.png" />:
+
Let $  X = X _ {0} + B $.  
 +
Then for every measurable set $  E $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720035.png" /></td> </tr></table>
+
$$
 +
\mu _ {*} ( X \cap E )  = 0 ,\ \
 +
\mu  ^ {*} ( X \cap E )  = \mu ( E) .
 +
$$
  
 
Yet another construction of a non-measurable set is based on the possibility of introducing a total order in a set having cardinality of the continuum.
 
Yet another construction of a non-measurable set is based on the possibility of introducing a total order in a set having cardinality of the continuum.
  
Example 4. There exist a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720036.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067200/n06720038.png" /> intersect every uncountable closed set. Any such set (a Bernstein set) is non-measurable (and does not have the Baire property). In particular, any set of positive exterior measure contains a non-measurable set.
+
Example 4. There exist a set $  B \subset  \mathbf R $
 +
such that $  B $
 +
and $  \mathbf R \setminus  B $
 +
intersect every uncountable closed set. Any such set (a Bernstein set) is non-measurable (and does not have the Baire property). In particular, any set of positive exterior measure contains a non-measurable set.
  
 
Apart from invariance under a shift (Example 2) and topological properties (Example 3) there are also reasons of a set-theoretical character why it is impossible to define a non-trivial measure for all subsets of a given set; such is, for example, Ulam's theorem (see [[#References|[2]]]) for sets of bounded cardinality.
 
Apart from invariance under a shift (Example 2) and topological properties (Example 3) there are also reasons of a set-theoretical character why it is impossible to define a non-trivial measure for all subsets of a given set; such is, for example, Ulam's theorem (see [[#References|[2]]]) for sets of bounded cardinality.
Line 43: Line 100:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.R. Halmos,  "Measure theory" , v. Nostrand  (1950)  {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.C. Oxtoby,  "Measure and category" , Springer  (1971)  {{MR|0393403}} {{ZBL|0217.09201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.R. Gelbaum,  J.M.H. Olmsted,  "Counterexamples in analysis" , Holden-Day  (1964)  {{MR|0169961}} {{ZBL|0121.28902}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.R. Halmos,  "Measure theory" , v. Nostrand  (1950)  {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.C. Oxtoby,  "Measure and category" , Springer  (1971)  {{MR|0393403}} {{ZBL|0217.09201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.R. Gelbaum,  J.M.H. Olmsted,  "Counterexamples in analysis" , Holden-Day  (1964)  {{MR|0169961}} {{ZBL|0121.28902}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:03, 6 June 2020


A set that is not a measurable set. In more detail: A set $ X $ belonging to a hereditary $ \sigma $- ring $ H ( S) $ is non-measurable if

$$ \mu ^ {*} ( X) > \ \mu _ {*} ( X) ; $$

here $ S $ is the $ \sigma $- ring on which the measure $ \mu $ is given, and $ \mu ^ {*} $ and $ \mu _ {*} $ are the exterior and interior measures, respectively (see Measure).

For an intuitive grasp of the concept of a non-measurable set, the following "effective constructions" are useful.

Example 1. let

$$ K = \{ {( x , y ) } : {0 \leq x \leq 1 , 0 \leq y \leq 1 } \} $$

be the unit square and define a measure $ \mu $ on the sets

$$ \widehat{E} = \{ {( x , y ) } : {x \in E , 0 \leq y \leq 1 } \} , $$

where $ E $ runs through the Lebesgue-measurable sets of measure $ m ( E) $, by setting $ \mu ( \widehat{E} ) = m ( E) $. Then the set

$$ X = \{ {( x , y ) } : {0 \leq x \leq 1 , y = 1 / 2 } \} $$

is non-measurable, since $ \mu ^ {*} ( X) = 1 $, $ \mu _ {*} ( X) = 0 $.

The oldest and simplest construction of a non-measurable set is due to G. Vitali (1905).

Example 2. Let $ \mathbf Q $ be the set of all rational numbers. Then a set $ X $( called a Vitali set) having in accordance with the axiom of choice exactly one element in common with every set of the form $ \mathbf Q + a $, where $ a $ is any real number, is non-measurable. No Vitali set has the Baire property.

Example 3. Let $ B $( respectively, $ C $) be the set of numbers of the form $ n + m \xi $, where $ \xi $ is an irrational number, $ m $ and $ n $ are integers with $ n $ even (respectively, $ n $ odd), and let $ X _ {0} $ be a set obtained by means of the axiom of choice from the equivalence classes of the set of real numbers under the relation:

$$ x \sim y \ \textrm{ if } \ x - y \in A = B \cup C . $$

Let $ X = X _ {0} + B $. Then for every measurable set $ E $:

$$ \mu _ {*} ( X \cap E ) = 0 ,\ \ \mu ^ {*} ( X \cap E ) = \mu ( E) . $$

Yet another construction of a non-measurable set is based on the possibility of introducing a total order in a set having cardinality of the continuum.

Example 4. There exist a set $ B \subset \mathbf R $ such that $ B $ and $ \mathbf R \setminus B $ intersect every uncountable closed set. Any such set (a Bernstein set) is non-measurable (and does not have the Baire property). In particular, any set of positive exterior measure contains a non-measurable set.

Apart from invariance under a shift (Example 2) and topological properties (Example 3) there are also reasons of a set-theoretical character why it is impossible to define a non-trivial measure for all subsets of a given set; such is, for example, Ulam's theorem (see [2]) for sets of bounded cardinality.

No specific example is known of a Lebesgue non-measurable set that can be constructed without the use of the axiom of choice.

References

[1] P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802
[2] J.C. Oxtoby, "Measure and category" , Springer (1971) MR0393403 Zbl 0217.09201
[3] B.R. Gelbaum, J.M.H. Olmsted, "Counterexamples in analysis" , Holden-Day (1964) MR0169961 Zbl 0121.28902

Comments

See also Measure; Gödel constructive set; Descriptive set theory.

In certain models of ZF (not ZFC) every set of real numbers is Lebesgue measurable (a result of Solovay), so the axiom of choice is needed to construct a Lebesgue non-measurable set.

For Ulam's theorem see Cardinal number.

How to Cite This Entry:
Non-measurable set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-measurable_set&oldid=28255
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article