Namespaces
Variants
Actions

Difference between revisions of "Noether theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
n0667901.png
 +
$#A+1 = 150 n = 0
 +
$#C+1 = 150 : ~/encyclopedia/old_files/data/N066/N.0606790 Noether theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Noether's first theorem establishes a connection between the infinitesimal symmetries of a functional of the form
 
Noether's first theorem establishes a connection between the infinitesimal symmetries of a functional of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667901.png" /></td> </tr></table>
+
$$
 +
A ( u ( x) )  = \int\limits L ( x , u ( x) , u _ {,j} ( x) )  d  ^ {n} x ,
 +
$$
 +
 
 +
where  $  x = ( x  ^ {1} \dots x  ^ {n} ) $
 +
are independent variables,  $  u ( x) = ( u  ^ {1} ( x) \dots u  ^ {N} ( x) ) $
 +
are functions defined in a certain domain  $  D \subset  \mathbf R  ^ {n} $,
 +
$  u _ {,j} =(\partial  / \partial  x  ^ {j} ) ( u ( x) ) $
 +
are their partial derivatives, and  $  L $
 +
is a certain function (the Lagrangian), and the conservation laws for the corresponding system of Euler–Lagrange equations
 +
 
 +
$$
 +
 
 +
\frac{\delta L }{\delta u  ^ {a} }
 +
  \equiv \
 +
 
 +
\frac{\partial  L }{\partial  u  ^ {a} }
 +
-
 +
 
 +
\frac{d }{d x  ^ {i} }
 +
 
 +
\frac{\partial  L }{\partial  u _ {,i}  ^ {a} }
 +
  = 0 ,
 +
$$
 +
 
 +
which gives necessary conditions for an extremum of  $  A $.
 +
Namely, to an infinitesimal symmetry  $  Z $,
 +
that is, a vector field
 +
 
 +
$$
 +
= X  ^ {i} ( x)
 +
 
 +
\frac \partial {\partial  x  ^ {i} }
 +
+
 +
U  ^ {a} ( x , u )
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667902.png" /> are independent variables, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667903.png" /> are functions defined in a certain domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667904.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667905.png" /> are their partial derivatives, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667906.png" /> is a certain function (the Lagrangian), and the conservation laws for the corresponding system of Euler–Lagrange equations
+
\frac \partial {\partial u  ^ {a} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667907.png" /></td> </tr></table>
+
$$
  
which gives necessary conditions for an extremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667908.png" />. Namely, to an infinitesimal symmetry <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n0667909.png" />, that is, a vector field
+
that generates a one-parameter group of transformations preserving  $  A $,  
 +
corresponds the conservation law
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679010.png" /></td> </tr></table>
+
$$
 +
\nu _ {Z}  = \
 +
\left [
 +
L X  ^ {i} + ( U  ^ {a} - u _ {,j}  ^ {a} X  ^ {j} )
  
that generates a one-parameter group of transformations preserving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679011.png" />, corresponds the conservation law
+
\frac{\partial  L }{\partial  u _ {,i}  ^ {a} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679012.png" /></td> </tr></table>
+
\right ]
 +
d x  ^ {1} \wedge \dots \wedge \widehat{d}  x  ^ {i} \wedge \dots \wedge d x  ^ {n}
 +
$$
  
(where the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679013.png" /> indicates the omission of the corresponding factor), that is, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679014.png" />-form depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679015.png" /> that is closed when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679016.png" /> satisfies the Euler–Lagrange equations.
+
(where the symbol $  \widehat{ {}}  $
 +
indicates the omission of the corresponding factor), that is, an $  ( n - 1 ) $-
 +
form depending on $  u ( x) $
 +
that is closed when $  u ( x) $
 +
satisfies the Euler–Lagrange equations.
  
In field theory, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679017.png" /> and the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679018.png" /> are interpreted as space-time coordinates, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679019.png" /> is called the action and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679020.png" /> the field. To fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679021.png" /> providing an extremum of the action functional correspond physically realizable fields with a given Lagrange function. If such a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679022.png" /> vanishes on the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679023.png" />, then by Stokes' theorem the integral of the conservation law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679024.png" /> over a hypersurface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679025.png" /> does not depend on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679026.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679027.png" /> is the time coordinate, then this integral yields a quantity that is preserved in the course of time (whence the name conservation law).
+
In field theory, where $  n = 4 $
 +
and the coordinates $  x $
 +
are interpreted as space-time coordinates, $  A $
 +
is called the action and $  u ( x) $
 +
the field. To fields $  u ( x) $
 +
providing an extremum of the action functional correspond physically realizable fields with a given Lagrange function. If such a field $  u ( x) $
 +
vanishes on the boundary of $  D $,  
 +
then by Stokes' theorem the integral of the conservation law $  v $
 +
over a hypersurface $  D \cap \{ x  ^ {1} = c \} $
 +
does not depend on the choice of $  c $.  
 +
In particular, if $  x  ^ {1} $
 +
is the time coordinate, then this integral yields a quantity that is preserved in the course of time (whence the name conservation law).
  
 
The invariance of the Lagrange function of distinct physical fields under parallel translations and Lorentz transformations (which is a consequence of the homogeneity and isotropy of Minkowski space-time) leads, by Noether's theorem, to the energy-momentum tensor and the angular momentum tensor of the field and to corresponding conservations laws for the energy, momentum and angular momentum of the motion. Invariance of the action functional of the electromagnetic field under gauge transformations leads to the conservation law for electric charge. Similarly, invariance of the Lagrangian of some field under gauge transformations yields conservation laws for various charges.
 
The invariance of the Lagrange function of distinct physical fields under parallel translations and Lorentz transformations (which is a consequence of the homogeneity and isotropy of Minkowski space-time) leads, by Noether's theorem, to the energy-momentum tensor and the angular momentum tensor of the field and to corresponding conservations laws for the energy, momentum and angular momentum of the motion. Invariance of the action functional of the electromagnetic field under gauge transformations leads to the conservation law for electric charge. Similarly, invariance of the Lagrangian of some field under gauge transformations yields conservation laws for various charges.
  
In classical mechanics, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679028.png" /> and the coordinate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679029.png" /> is interpreted as time. If the Lagrange function does not depend explicitly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679030.png" />, then the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679031.png" /> is a symmetry, and Noether's theorem leads to the law of conservation of energy. For a mechanical system whose motion can be described as geodesic motion in some Riemannian metric, the symmetries of the corresponding action functional are Killing vector (or, more generally, Killing tensor) fields. In this case the conservation law furnished by Noether's theorem means geometrically that the magnitude of the projection of the Killing vector field in the direction of a geodesic is constant along it. The general modern formulation of Noether's theorem in the language of fibre bundles consists in the following. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679032.png" /> be a vector bundle over an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679033.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679034.png" /> with a fixed volume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679035.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679036.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679037.png" /> be the vector bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679038.png" />-jets of sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679039.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679040.png" /> are local coordinates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679041.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679042.png" /> becomes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679043.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679044.png" /> are local coordinates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679045.png" />, then in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679046.png" /> one has local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679047.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679048.png" /> is a multi-index and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679049.png" />. The value of the coordinate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679050.png" /> on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679051.png" />-jet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679052.png" /> of the section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679053.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679054.png" /> is
+
In classical mechanics, $  n = 1 $
 +
and the coordinate $  x  ^ {1} $
 +
is interpreted as time. If the Lagrange function does not depend explicitly on $  x  ^ {1} $,  
 +
then the vector field $  \partial  / \partial  x  ^ {1} $
 +
is a symmetry, and Noether's theorem leads to the law of conservation of energy. For a mechanical system whose motion can be described as geodesic motion in some Riemannian metric, the symmetries of the corresponding action functional are Killing vector (or, more generally, Killing tensor) fields. In this case the conservation law furnished by Noether's theorem means geometrically that the magnitude of the projection of the Killing vector field in the direction of a geodesic is constant along it. The general modern formulation of Noether's theorem in the language of fibre bundles consists in the following. Let $  \pi : E \rightarrow M $
 +
be a vector bundle over an n $-
 +
dimensional manifold $  M $
 +
with a fixed volume n $-
 +
form $  \omega \in \Lambda  ^ {n} ( M) $,  
 +
and let $  \pi _ {k} : J  ^ {k} E \rightarrow M $
 +
be the vector bundle of $  k $-
 +
jets of sections of $  \pi $.  
 +
If $  x  ^ {i} $
 +
are local coordinates in $  M $
 +
in which $  \omega $
 +
becomes $  \omega = d x  ^ {1} \wedge \dots \wedge d x  ^ {n} $,  
 +
and if $  x  ^ {i} , u  ^ {a} $
 +
are local coordinates in $  E $,  
 +
then in $  J  ^ {k} E $
 +
one has local coordinates $  x  ^ {i} , u  ^ {a} , u  ^  \alpha  $,  
 +
where $  \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $
 +
is a multi-index and $  | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} \leq  k $.  
 +
The value of the coordinate $  u  ^  \alpha  $
 +
on the $  k $-
 +
jet $  J _ {x _ {0}  }  ^ {k} u ( x) $
 +
of the section $  u ( x) $
 +
of  $  \pi $
 +
is
 +
 
 +
$$
 +
u _ {, \alpha }  ^ {a} ( x _ {0} )  = \
 +
\left (
 +
\frac \partial {\partial  x _ {1} }
 +
\right ) ^ {\alpha _ {1} } \dots \left (
 +
\frac \partial {\partial  x  ^ {n} }
 +
\right ) ^ {\alpha _ {n} }
 +
u  ^ {a} ( x _ {0} ) .
 +
$$
 +
 
 +
A smooth function  $  L :  J  ^ {k} E \rightarrow \mathbf R $
 +
determines an action functional  $  A $
 +
that associates with a section  $  s :  x \rightarrow u ( x) $
 +
the number
 +
 
 +
$$
 +
A ( s)  = \int\limits _ { M }
 +
L ( x , u ( x) , u _ {, \alpha }  ( x) ) \omega .
 +
$$
 +
 
 +
An extremal  $  u ( x) $
 +
for this functional (in a problem with fixed ends) satisfies the Euler–Lagrange equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679055.png" /></td> </tr></table>
+
$$
  
A smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679056.png" /> determines an action functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679057.png" /> that associates with a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679058.png" /> the number
+
\frac{\delta L }{\delta u  ^ {a} }
 +
  \equiv \
 +
\sum _ {\begin{array}{c}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679059.png" /></td> </tr></table>
+
\alpha = ( \alpha _ {1} \dots \alpha _ {n} ) \\
 +
| \alpha | \leq  k
 +
\end{array}
 +
}
 +
( - 1 ) ^ {| \alpha | }
  
An extremal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679060.png" /> for this functional (in a problem with fixed ends) satisfies the Euler–Lagrange equations
+
\frac{d  ^  \alpha  }{d x  ^  \alpha  }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679061.png" /></td> </tr></table>
+
\frac{\partial  L }{\partial  u _ {, \alpha }  ^ {a} }
 +
  = 0 ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679062.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{d  ^  \alpha  }{d x  ^  \alpha  }
 +
  = \
 +
\left (
 +
 
 +
\frac{d}{d x  ^ {1} }
 +
\right ) ^ {\alpha _ {1} } \dots
 +
\left (
 +
\frac{d}{d x  ^ {n} }
 +
\right ) ^ {\alpha _ {n} }
 +
$$
 +
 
 +
are the total derivatives. An infinitesimal automorphism of  $  \pi $,
 +
that is, a vector field  $  Z $
 +
on  $  E $
 +
of the form
 +
 
 +
$$
 +
Z  =  X  ^ {i} ( x)
  
are the total derivatives. An infinitesimal automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679063.png" />, that is, a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679064.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679065.png" /> of the form
+
\frac \partial {\partial  x  ^ {i} }
 +
+
 +
U  ^ {a} ( x , u )
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679066.png" /></td> </tr></table>
+
\frac \partial {\partial  u  ^ {a} }
 +
,
 +
$$
  
is called an infinitesimal symmetry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679067.png" /> if the Lie derivative of the Lagrange <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679068.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679069.png" /> in the direction of the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679070.png" />, which is generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679071.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679072.png" />, vanishes:
+
is called an infinitesimal symmetry of $  A $
 +
if the Lie derivative of the Lagrange n $-
 +
form $  L \omega \in \Lambda  ^ {n} ( J  ^ {k} E ) $
 +
in the direction of the vector field $  Z  ^ {(} k) $,  
 +
which is generated by $  Z $
 +
on $  J  ^ {k} E $,  
 +
vanishes:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679073.png" /></td> </tr></table>
+
$$
 +
Z  ^ {(} k) ( L \omega )  = 0 .
 +
$$
  
 
For the Lie derivative the following fundamental Noether formula holds:
 
For the Lie derivative the following fundamental Noether formula holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679074.png" /></td> </tr></table>
+
$$
 +
Z  ^ {(} k) ( L \omega )  = \
 +
\left [
 +
{\overline{U}\; } {}  ^ {a}
 +
 
 +
\frac{\delta L }{\delta u  ^ {a} }
 +
+
 +
 
 +
\frac{d}{d x  ^ {i} }
 +
J  ^ {i}
 +
\right ] \omega ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679075.png" /></td> </tr></table>
+
$$
 +
{\overline{U}\; } {}  ^ {a}  = \
 +
U  ^ {a} - u _ {,i}  ^ {a}
 +
X  ^ {i} ,\  J  ^ {i}  = \
 +
L X  ^ {i} + F ^ { i } ,
 +
$$
 +
 
 +
and the  $  F ^ { i } $
 +
are the components of a certain vector field depending on  $  {\overline{U}\; } {}  ^ {a} $,
 +
$  L $
 +
and their derivatives. In particular,  $  F ^ { i } = {\overline{U}\; } {}  ^ {a} ( \partial  L / \partial  u _ {,i}  ^ {a} ) $
 +
for  $  k = 1 $.
 +
If  $  Z $
 +
is an infinitesimal symmetry, then
 +
 
 +
$$
 +
- {\overline{U}\; } {}  ^ {a}
 +
\frac{\delta L }{\delta u  ^ {a} }
 +
  = \
 +
 
 +
\frac{d}{d x  ^ {i} }
 +
J  ^ {i} ,
 +
$$
  
and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679076.png" /> are the components of a certain vector field depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679078.png" /> and their derivatives. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679079.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679080.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679081.png" /> is an infinitesimal symmetry, then
+
that is, a certain linear combination of the variational derivatives  $  \delta L / \delta u  ^ {a} $
 +
of the Lagrange function  $  L $
 +
is the divergence of the vector field $  J = J  ^ {i} \partial  / \partial  x  ^ {i} $.  
 +
It is in this form that E. Noether stated her first theorem. The divergence of  $  J $(
 +
a so-called Noether current) vanishes on extremals of the action functional, and the  $  ( n - 1 ) $-
 +
form  $  v _ {z} = J \llcorner \omega $
 +
dual to it, which is obtained from  $  \omega $
 +
by inner multiplication by  $  J $,
 +
is closed, that is, it is a conservation law.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679082.png" /></td> </tr></table>
+
There are important generalizations of Noether's theorem (see, for example, –). They are based on an extension of the concept of an infinitesimal symmetry. Instead of vector fields on  $  E $
 +
to which correspond one-parameter groups of transformations one considers vector fields on  $  E $
 +
with coefficients depending on the sections  $  U ( x) $
 +
and their derivatives of arbitrary order. Such fields  $  Y $
 +
no longer determine one-parameter transformation groups; however, one can define for them by purely algebraic means the concept of a Lie derivative. A field  $  Y $
 +
is called an algebraic infinitesimal symmetry if the Lie derivative of the Lagrange form vanishes in the direction of this field (maybe after restricting to extremals of the action functional). The generalized Noether theorem associates a conservation law with every algebraic symmetry. When applied to various equations of mathematical physics one obtains a large number of new important conservation laws.
  
that is, a certain linear combination of the variational derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679083.png" /> of the Lagrange function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679084.png" /> is the divergence of the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679085.png" />. It is in this form that E. Noether stated her first theorem. The divergence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679086.png" /> (a so-called Noether current) vanishes on extremals of the action functional, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679087.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679088.png" /> dual to it, which is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679089.png" /> by inner multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679090.png" />, is closed, that is, it is a conservation law.
+
Noether's second theorem asserts that if the action functional admits an infinite-dimensional Lie algebra of infinitesimal symmetries whose coefficients depend linearly on  $  p $
 +
arbitrary functions  $  \phi  ^ {1} ( x) \dots \phi  ^ {p} ( x) $
 +
and their derivatives up to order  $  n $,  
 +
then the variational derivatives $  \delta L / \delta u  ^ {a} $
 +
of the Lagrange function $  L $
 +
satisfy a system of $  p $
 +
differential equations of order  $  m $.  
 +
Namely, if
  
There are important generalizations of Noether's theorem (see, for example, –). They are based on an extension of the concept of an infinitesimal symmetry. Instead of vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679091.png" /> to which correspond one-parameter groups of transformations one considers vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679092.png" /> with coefficients depending on the sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679093.png" /> and their derivatives of arbitrary order. Such fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679094.png" /> no longer determine one-parameter transformation groups; however, one can define for them by purely algebraic means the concept of a Lie derivative. A field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679095.png" /> is called an algebraic infinitesimal symmetry if the Lie derivative of the Lagrange form vanishes in the direction of this field (maybe after restricting to extremals of the action functional). The generalized Noether theorem associates a conservation law with every algebraic symmetry. When applied to various equations of mathematical physics one obtains a large number of new important conservation laws.
+
$$
 +
Z  =  \phi  ^ {s}
 +
U _ {s}  ^ {a}
  
Noether's second theorem asserts that if the action functional admits an infinite-dimensional Lie algebra of infinitesimal symmetries whose coefficients depend linearly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679096.png" /> arbitrary functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679097.png" /> and their derivatives up to order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679098.png" />, then the variational derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679099.png" /> of the Lagrange function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790100.png" /> satisfy a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790101.png" /> differential equations of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790102.png" />. Namely, if
+
\frac \partial {\partial  u  ^ {a} }
 +
+
 +
\phi _ {, \sigma }  ^ {s} ( x)
 +
U _ {s} ^ {\sigma a }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790103.png" /></td> </tr></table>
+
\frac \partial {\partial  u  ^ {a} }
 +
,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790104.png" /></td> </tr></table>
+
$$
 +
\sigma  = ( \sigma _ {1} \dots \sigma _ {n} ) ,\ \
 +
| \sigma |  = \sigma _ {1} + \dots + \sigma _ {n}  \leq  k ,
 +
$$
 +
 
 +
is an infinitesimal symmetry for any smooth functions  $  \phi  ^ {s} ( x) $,
 +
$  s = 1 \dots p $,
 +
then identically
 +
 
 +
$$
 +
U _ {s}  ^ {a}
 +
 
 +
\frac{\delta L }{\delta u  ^ {a} }
 +
+
 +
( - 1 ) ^ {| \sigma | }
 +
 
 +
\frac{d  ^  \sigma  }{d x  ^  \sigma  }
 +
 
 +
\left (
 +
U _ {s} ^ {\sigma a }
  
is an infinitesimal symmetry for any smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790106.png" />, then identically
+
\frac{\delta L }{\delta u  ^ {a} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790107.png" /></td> </tr></table>
+
\right )  = 0 ,\ \
 +
s = 1 \dots p .
 +
$$
  
 
This theorem has applications, for example, in the theory of gauge fields.
 
This theorem has applications, for example, in the theory of gauge fields.
Line 79: Line 316:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E. Noether,  "Invarianten beliebiger Differentialausdrücke"  ''Nachr. Gesellschaft. Wiss. Göttingen''  (1918)  pp. 37–44; 240  (Also: Gesammelte Abh., Springer, 1983, pp. 240–247)</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E. Noether,  "Invariante Variationsproblem"  ''Nachr. Gesellschaft. Wiss. Göttingen''  (1918)  pp. 237–257  (Also: Gesammelte Abh., Springer, 1983, pp. 248–270)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.N. Bogolyubov,  D.V. Shirkov,  "Introduction to the theory of quantized fields" , Wiley  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Gel'fand,  S.V. Fomin,  "Calculus of variations" , Prentice-Hall  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L.V. [L.V. Ovsyannikov] Ovsiannikov,  "Group analysis of differential equations" , Acad. Press  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  Yu.I. Manin,  "Algebraic aspects of nonlinear differential equations"  ''J. Soviet Math.'' , '''11''' :  1  (1979)  pp. 1–22  ''Itogi Nauk. i Tekhn. Sovrem. Probl. Mat.'' , '''11'''  (1978)  pp. 5–152</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.M. Vinogradov,  "On the algebro-geometric foundations of Lagrangian field theory"  ''Soviet Math. Dokl.'' , '''18''' :  5  (1977)  pp. 1200–1204  ''Dokl. Akad. Nauk SSSR'' , '''236''' :  2  (1977)  pp. 284–287</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.V. Lychagin,  "Contact geometry and non-linear second-order differential equations"  ''Russian Math. Surveys'' , '''34''' :  1  (1979)  pp. 149–180  ''Uspekhi Mat. Nauk'' , '''34''' :  1  (1979)  pp. 137–165</TD></TR></table>
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E. Noether,  "Invarianten beliebiger Differentialausdrücke"  ''Nachr. Gesellschaft. Wiss. Göttingen''  (1918)  pp. 37–44; 240  (Also: Gesammelte Abh., Springer, 1983, pp. 240–247)</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E. Noether,  "Invariante Variationsproblem"  ''Nachr. Gesellschaft. Wiss. Göttingen''  (1918)  pp. 237–257  (Also: Gesammelte Abh., Springer, 1983, pp. 248–270)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.N. Bogolyubov,  D.V. Shirkov,  "Introduction to the theory of quantized fields" , Wiley  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Gel'fand,  S.V. Fomin,  "Calculus of variations" , Prentice-Hall  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L.V. [L.V. Ovsyannikov] Ovsiannikov,  "Group analysis of differential equations" , Acad. Press  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  Yu.I. Manin,  "Algebraic aspects of nonlinear differential equations"  ''J. Soviet Math.'' , '''11''' :  1  (1979)  pp. 1–22  ''Itogi Nauk. i Tekhn. Sovrem. Probl. Mat.'' , '''11'''  (1978)  pp. 5–152</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.M. Vinogradov,  "On the algebro-geometric foundations of Lagrangian field theory"  ''Soviet Math. Dokl.'' , '''18''' :  5  (1977)  pp. 1200–1204  ''Dokl. Akad. Nauk SSSR'' , '''236''' :  2  (1977)  pp. 284–287</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.V. Lychagin,  "Contact geometry and non-linear second-order differential equations"  ''Russian Math. Surveys'' , '''34''' :  1  (1979)  pp. 149–180  ''Uspekhi Mat. Nauk'' , '''34''' :  1  (1979)  pp. 137–165</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.J. Olver,  "Applications of Lie groups to differential equations" , Springer  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Funk,  "Variationsrechnung und ihre Anwendung in Physik und Technik" , Springer  (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Ludwig,  C. Falter,  "Symmetries in physics" , Springer  (1988)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  T.-P. Cheng,  L.-F. Li,  "Gauge theory of elementary particle physics" , Oxford  (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Uhlenbeck,  "Conservation laws and their application in global differential geometry"  B. Srinivasan (ed.)  J. Sally (ed.) , ''Emmy Noether in Bryn Mawr'' , Springer  (1983)  pp. 103–117</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.J. Olver,  "Applications of Lie groups to differential equations" , Springer  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Funk,  "Variationsrechnung und ihre Anwendung in Physik und Technik" , Springer  (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Ludwig,  C. Falter,  "Symmetries in physics" , Springer  (1988)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  T.-P. Cheng,  L.-F. Li,  "Gauge theory of elementary particle physics" , Oxford  (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Uhlenbeck,  "Conservation laws and their application in global differential geometry"  B. Srinivasan (ed.)  J. Sally (ed.) , ''Emmy Noether in Bryn Mawr'' , Springer  (1983)  pp. 103–117</TD></TR></table>
  
Noether's normalization theorem: In any finitely-generated commutative integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790108.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790109.png" /> of transcendence degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790110.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790111.png" /> there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790112.png" /> elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790113.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790114.png" /> is integral over the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790115.png" /> generated by them (cf. [[Integral ring|Integral ring]]; [[Integral extension of a ring|Integral extension of a ring]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790116.png" /> has a grading of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790117.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790118.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790119.png" /> can be chosen to be homogeneous.
+
Noether's normalization theorem: In any finitely-generated commutative integral $  k $-
 +
algebra $  A $
 +
of transcendence degree $  d $
 +
over a field $  k $
 +
there are $  d $
 +
elements $  x _ {1} \dots x _ {d} $
 +
such that $  A $
 +
is integral over the subalgebra $  B $
 +
generated by them (cf. [[Integral ring|Integral ring]]; [[Integral extension of a ring|Integral extension of a ring]]). If $  A $
 +
has a grading of the form $  A = \oplus _ {i \geq  0 }  A _ {i} $,  
 +
$  A _ {0} = k $,  
 +
then $  x _ {1} \dots x _ {d} $
 +
can be chosen to be homogeneous.
  
 
This theorem (sometimes also called Noether's normalization lemma) was proved by E. Noether [[#References|[1]]]; in the graded case it was already stated by D. Hilbert [[#References|[2]]].
 
This theorem (sometimes also called Noether's normalization lemma) was proved by E. Noether [[#References|[1]]]; in the graded case it was already stated by D. Hilbert [[#References|[2]]].
  
The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790120.png" /> are algebraically independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790121.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790122.png" /> is a polynomial algebra in these variables with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790123.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790124.png" /> is infinite, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790125.png" /> can be chosen from linear combinations of generators of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790126.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790127.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790128.png" /> is algebraically closed, then the normalization theorem can be stated geometrically: Every irreducible affine <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790129.png" />-dimensional algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790130.png" /> is a finitely-sheeted (ramified) covering of an affine <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790131.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790132.png" />; more accurately, it has a finite morphism onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790133.png" />. Furthermore, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790134.png" /> is a closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790135.png" />, then this morphism can be realized as the restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790136.png" /> of a certain linear mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790137.png" /> onto a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790138.png" />-dimensional linear subspace.
+
The elements $  x _ {1} \dots x _ {d} $
 +
are algebraically independent over $  k $,  
 +
so that $  B $
 +
is a polynomial algebra in these variables with coefficients in $  k $.  
 +
If $  k $
 +
is infinite, then $  x _ {1} \dots x _ {d} $
 +
can be chosen from linear combinations of generators of $  A $
 +
over $  k $.  
 +
If $  k $
 +
is algebraically closed, then the normalization theorem can be stated geometrically: Every irreducible affine $  d $-
 +
dimensional algebraic variety $  X $
 +
is a finitely-sheeted (ramified) covering of an affine $  d $-
 +
dimensional space $  A  ^ {d} $;  
 +
more accurately, it has a finite morphism onto $  A  ^ {d} $.  
 +
Furthermore, if $  X $
 +
is a closed subset of $  k  ^ {n} $,  
 +
then this morphism can be realized as the restriction to $  X $
 +
of a certain linear mapping of $  k  ^ {n} $
 +
onto a $  d $-
 +
dimensional linear subspace.
  
The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790139.png" /> is finitely generated as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790140.png" />-module. The subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790141.png" /> is not unique; however, a number of properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790142.png" /> as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790143.png" />-module do not depend on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790144.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790145.png" /> is graded, as above under the hypotheses of the theorem, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790146.png" /> are homogeneous (so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790147.png" /> is also graded), then the property of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790148.png" /> of being a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790149.png" />-module does not depend on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790150.png" />.
+
The algebra $  A $
 +
is finitely generated as a $  B $-
 +
module. The subalgebra $  B $
 +
is not unique; however, a number of properties of $  A $
 +
as a $  B $-
 +
module do not depend on the choice of $  B $.  
 +
For example, if $  A $
 +
is graded, as above under the hypotheses of the theorem, and if $  x _ {1} \dots x _ {d} $
 +
are homogeneous (so that $  B $
 +
is also graded), then the property of $  A $
 +
of being a free $  B $-
 +
module does not depend on the choice of $  B $.
  
 
====References====
 
====References====

Latest revision as of 08:02, 6 June 2020


Noether's first theorem establishes a connection between the infinitesimal symmetries of a functional of the form

$$ A ( u ( x) ) = \int\limits L ( x , u ( x) , u _ {,j} ( x) ) d ^ {n} x , $$

where $ x = ( x ^ {1} \dots x ^ {n} ) $ are independent variables, $ u ( x) = ( u ^ {1} ( x) \dots u ^ {N} ( x) ) $ are functions defined in a certain domain $ D \subset \mathbf R ^ {n} $, $ u _ {,j} =(\partial / \partial x ^ {j} ) ( u ( x) ) $ are their partial derivatives, and $ L $ is a certain function (the Lagrangian), and the conservation laws for the corresponding system of Euler–Lagrange equations

$$ \frac{\delta L }{\delta u ^ {a} } \equiv \ \frac{\partial L }{\partial u ^ {a} } - \frac{d }{d x ^ {i} } \frac{\partial L }{\partial u _ {,i} ^ {a} } = 0 , $$

which gives necessary conditions for an extremum of $ A $. Namely, to an infinitesimal symmetry $ Z $, that is, a vector field

$$ Z = X ^ {i} ( x) \frac \partial {\partial x ^ {i} } + U ^ {a} ( x , u ) \frac \partial {\partial u ^ {a} } $$

that generates a one-parameter group of transformations preserving $ A $, corresponds the conservation law

$$ \nu _ {Z} = \ \left [ L X ^ {i} + ( U ^ {a} - u _ {,j} ^ {a} X ^ {j} ) \frac{\partial L }{\partial u _ {,i} ^ {a} } \right ] d x ^ {1} \wedge \dots \wedge \widehat{d} x ^ {i} \wedge \dots \wedge d x ^ {n} $$

(where the symbol $ \widehat{ {}} $ indicates the omission of the corresponding factor), that is, an $ ( n - 1 ) $- form depending on $ u ( x) $ that is closed when $ u ( x) $ satisfies the Euler–Lagrange equations.

In field theory, where $ n = 4 $ and the coordinates $ x $ are interpreted as space-time coordinates, $ A $ is called the action and $ u ( x) $ the field. To fields $ u ( x) $ providing an extremum of the action functional correspond physically realizable fields with a given Lagrange function. If such a field $ u ( x) $ vanishes on the boundary of $ D $, then by Stokes' theorem the integral of the conservation law $ v $ over a hypersurface $ D \cap \{ x ^ {1} = c \} $ does not depend on the choice of $ c $. In particular, if $ x ^ {1} $ is the time coordinate, then this integral yields a quantity that is preserved in the course of time (whence the name conservation law).

The invariance of the Lagrange function of distinct physical fields under parallel translations and Lorentz transformations (which is a consequence of the homogeneity and isotropy of Minkowski space-time) leads, by Noether's theorem, to the energy-momentum tensor and the angular momentum tensor of the field and to corresponding conservations laws for the energy, momentum and angular momentum of the motion. Invariance of the action functional of the electromagnetic field under gauge transformations leads to the conservation law for electric charge. Similarly, invariance of the Lagrangian of some field under gauge transformations yields conservation laws for various charges.

In classical mechanics, $ n = 1 $ and the coordinate $ x ^ {1} $ is interpreted as time. If the Lagrange function does not depend explicitly on $ x ^ {1} $, then the vector field $ \partial / \partial x ^ {1} $ is a symmetry, and Noether's theorem leads to the law of conservation of energy. For a mechanical system whose motion can be described as geodesic motion in some Riemannian metric, the symmetries of the corresponding action functional are Killing vector (or, more generally, Killing tensor) fields. In this case the conservation law furnished by Noether's theorem means geometrically that the magnitude of the projection of the Killing vector field in the direction of a geodesic is constant along it. The general modern formulation of Noether's theorem in the language of fibre bundles consists in the following. Let $ \pi : E \rightarrow M $ be a vector bundle over an $ n $- dimensional manifold $ M $ with a fixed volume $ n $- form $ \omega \in \Lambda ^ {n} ( M) $, and let $ \pi _ {k} : J ^ {k} E \rightarrow M $ be the vector bundle of $ k $- jets of sections of $ \pi $. If $ x ^ {i} $ are local coordinates in $ M $ in which $ \omega $ becomes $ \omega = d x ^ {1} \wedge \dots \wedge d x ^ {n} $, and if $ x ^ {i} , u ^ {a} $ are local coordinates in $ E $, then in $ J ^ {k} E $ one has local coordinates $ x ^ {i} , u ^ {a} , u ^ \alpha $, where $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $ is a multi-index and $ | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} \leq k $. The value of the coordinate $ u ^ \alpha $ on the $ k $- jet $ J _ {x _ {0} } ^ {k} u ( x) $ of the section $ u ( x) $ of $ \pi $ is

$$ u _ {, \alpha } ^ {a} ( x _ {0} ) = \ \left ( \frac \partial {\partial x _ {1} } \right ) ^ {\alpha _ {1} } \dots \left ( \frac \partial {\partial x ^ {n} } \right ) ^ {\alpha _ {n} } u ^ {a} ( x _ {0} ) . $$

A smooth function $ L : J ^ {k} E \rightarrow \mathbf R $ determines an action functional $ A $ that associates with a section $ s : x \rightarrow u ( x) $ the number

$$ A ( s) = \int\limits _ { M } L ( x , u ( x) , u _ {, \alpha } ( x) ) \omega . $$

An extremal $ u ( x) $ for this functional (in a problem with fixed ends) satisfies the Euler–Lagrange equations

$$ \frac{\delta L }{\delta u ^ {a} } \equiv \ \sum _ {\begin{array}{c} \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) \\ | \alpha | \leq k \end{array} } ( - 1 ) ^ {| \alpha | } \frac{d ^ \alpha }{d x ^ \alpha } \frac{\partial L }{\partial u _ {, \alpha } ^ {a} } = 0 , $$

where

$$ \frac{d ^ \alpha }{d x ^ \alpha } = \ \left ( \frac{d}{d x ^ {1} } \right ) ^ {\alpha _ {1} } \dots \left ( \frac{d}{d x ^ {n} } \right ) ^ {\alpha _ {n} } $$

are the total derivatives. An infinitesimal automorphism of $ \pi $, that is, a vector field $ Z $ on $ E $ of the form

$$ Z = X ^ {i} ( x) \frac \partial {\partial x ^ {i} } + U ^ {a} ( x , u ) \frac \partial {\partial u ^ {a} } , $$

is called an infinitesimal symmetry of $ A $ if the Lie derivative of the Lagrange $ n $- form $ L \omega \in \Lambda ^ {n} ( J ^ {k} E ) $ in the direction of the vector field $ Z ^ {(} k) $, which is generated by $ Z $ on $ J ^ {k} E $, vanishes:

$$ Z ^ {(} k) ( L \omega ) = 0 . $$

For the Lie derivative the following fundamental Noether formula holds:

$$ Z ^ {(} k) ( L \omega ) = \ \left [ {\overline{U}\; } {} ^ {a} \frac{\delta L }{\delta u ^ {a} } + \frac{d}{d x ^ {i} } J ^ {i} \right ] \omega , $$

where

$$ {\overline{U}\; } {} ^ {a} = \ U ^ {a} - u _ {,i} ^ {a} X ^ {i} ,\ J ^ {i} = \ L X ^ {i} + F ^ { i } , $$

and the $ F ^ { i } $ are the components of a certain vector field depending on $ {\overline{U}\; } {} ^ {a} $, $ L $ and their derivatives. In particular, $ F ^ { i } = {\overline{U}\; } {} ^ {a} ( \partial L / \partial u _ {,i} ^ {a} ) $ for $ k = 1 $. If $ Z $ is an infinitesimal symmetry, then

$$ - {\overline{U}\; } {} ^ {a} \frac{\delta L }{\delta u ^ {a} } = \ \frac{d}{d x ^ {i} } J ^ {i} , $$

that is, a certain linear combination of the variational derivatives $ \delta L / \delta u ^ {a} $ of the Lagrange function $ L $ is the divergence of the vector field $ J = J ^ {i} \partial / \partial x ^ {i} $. It is in this form that E. Noether stated her first theorem. The divergence of $ J $( a so-called Noether current) vanishes on extremals of the action functional, and the $ ( n - 1 ) $- form $ v _ {z} = J \llcorner \omega $ dual to it, which is obtained from $ \omega $ by inner multiplication by $ J $, is closed, that is, it is a conservation law.

There are important generalizations of Noether's theorem (see, for example, –). They are based on an extension of the concept of an infinitesimal symmetry. Instead of vector fields on $ E $ to which correspond one-parameter groups of transformations one considers vector fields on $ E $ with coefficients depending on the sections $ U ( x) $ and their derivatives of arbitrary order. Such fields $ Y $ no longer determine one-parameter transformation groups; however, one can define for them by purely algebraic means the concept of a Lie derivative. A field $ Y $ is called an algebraic infinitesimal symmetry if the Lie derivative of the Lagrange form vanishes in the direction of this field (maybe after restricting to extremals of the action functional). The generalized Noether theorem associates a conservation law with every algebraic symmetry. When applied to various equations of mathematical physics one obtains a large number of new important conservation laws.

Noether's second theorem asserts that if the action functional admits an infinite-dimensional Lie algebra of infinitesimal symmetries whose coefficients depend linearly on $ p $ arbitrary functions $ \phi ^ {1} ( x) \dots \phi ^ {p} ( x) $ and their derivatives up to order $ n $, then the variational derivatives $ \delta L / \delta u ^ {a} $ of the Lagrange function $ L $ satisfy a system of $ p $ differential equations of order $ m $. Namely, if

$$ Z = \phi ^ {s} U _ {s} ^ {a} \frac \partial {\partial u ^ {a} } + \phi _ {, \sigma } ^ {s} ( x) U _ {s} ^ {\sigma a } \frac \partial {\partial u ^ {a} } , $$

where

$$ \sigma = ( \sigma _ {1} \dots \sigma _ {n} ) ,\ \ | \sigma | = \sigma _ {1} + \dots + \sigma _ {n} \leq k , $$

is an infinitesimal symmetry for any smooth functions $ \phi ^ {s} ( x) $, $ s = 1 \dots p $, then identically

$$ U _ {s} ^ {a} \frac{\delta L }{\delta u ^ {a} } + ( - 1 ) ^ {| \sigma | } \frac{d ^ \sigma }{d x ^ \sigma } \left ( U _ {s} ^ {\sigma a } \frac{\delta L }{\delta u ^ {a} } \right ) = 0 ,\ \ s = 1 \dots p . $$

This theorem has applications, for example, in the theory of gauge fields.

Noether proved her first and second theorem in 1918 (see ).

References

[1a] E. Noether, "Invarianten beliebiger Differentialausdrücke" Nachr. Gesellschaft. Wiss. Göttingen (1918) pp. 37–44; 240 (Also: Gesammelte Abh., Springer, 1983, pp. 240–247)
[1b] E. Noether, "Invariante Variationsproblem" Nachr. Gesellschaft. Wiss. Göttingen (1918) pp. 237–257 (Also: Gesammelte Abh., Springer, 1983, pp. 248–270)
[2] N.N. Bogolyubov, D.V. Shirkov, "Introduction to the theory of quantized fields" , Wiley (1980) (Translated from Russian)
[3] I.M. Gel'fand, S.V. Fomin, "Calculus of variations" , Prentice-Hall (1963) (Translated from Russian)
[4] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)
[5] L.V. [L.V. Ovsyannikov] Ovsiannikov, "Group analysis of differential equations" , Acad. Press (1982) (Translated from Russian)
[6] Yu.I. Manin, "Algebraic aspects of nonlinear differential equations" J. Soviet Math. , 11 : 1 (1979) pp. 1–22 Itogi Nauk. i Tekhn. Sovrem. Probl. Mat. , 11 (1978) pp. 5–152
[7] A.M. Vinogradov, "On the algebro-geometric foundations of Lagrangian field theory" Soviet Math. Dokl. , 18 : 5 (1977) pp. 1200–1204 Dokl. Akad. Nauk SSSR , 236 : 2 (1977) pp. 284–287
[8] V.V. Lychagin, "Contact geometry and non-linear second-order differential equations" Russian Math. Surveys , 34 : 1 (1979) pp. 149–180 Uspekhi Mat. Nauk , 34 : 1 (1979) pp. 137–165

Comments

References

[a1] P.J. Olver, "Applications of Lie groups to differential equations" , Springer (1986)
[a2] P. Funk, "Variationsrechnung und ihre Anwendung in Physik und Technik" , Springer (1962)
[a3] W. Ludwig, C. Falter, "Symmetries in physics" , Springer (1988)
[a4] T.-P. Cheng, L.-F. Li, "Gauge theory of elementary particle physics" , Oxford (1984)
[a5] K. Uhlenbeck, "Conservation laws and their application in global differential geometry" B. Srinivasan (ed.) J. Sally (ed.) , Emmy Noether in Bryn Mawr , Springer (1983) pp. 103–117

Noether's normalization theorem: In any finitely-generated commutative integral $ k $- algebra $ A $ of transcendence degree $ d $ over a field $ k $ there are $ d $ elements $ x _ {1} \dots x _ {d} $ such that $ A $ is integral over the subalgebra $ B $ generated by them (cf. Integral ring; Integral extension of a ring). If $ A $ has a grading of the form $ A = \oplus _ {i \geq 0 } A _ {i} $, $ A _ {0} = k $, then $ x _ {1} \dots x _ {d} $ can be chosen to be homogeneous.

This theorem (sometimes also called Noether's normalization lemma) was proved by E. Noether [1]; in the graded case it was already stated by D. Hilbert [2].

The elements $ x _ {1} \dots x _ {d} $ are algebraically independent over $ k $, so that $ B $ is a polynomial algebra in these variables with coefficients in $ k $. If $ k $ is infinite, then $ x _ {1} \dots x _ {d} $ can be chosen from linear combinations of generators of $ A $ over $ k $. If $ k $ is algebraically closed, then the normalization theorem can be stated geometrically: Every irreducible affine $ d $- dimensional algebraic variety $ X $ is a finitely-sheeted (ramified) covering of an affine $ d $- dimensional space $ A ^ {d} $; more accurately, it has a finite morphism onto $ A ^ {d} $. Furthermore, if $ X $ is a closed subset of $ k ^ {n} $, then this morphism can be realized as the restriction to $ X $ of a certain linear mapping of $ k ^ {n} $ onto a $ d $- dimensional linear subspace.

The algebra $ A $ is finitely generated as a $ B $- module. The subalgebra $ B $ is not unique; however, a number of properties of $ A $ as a $ B $- module do not depend on the choice of $ B $. For example, if $ A $ is graded, as above under the hypotheses of the theorem, and if $ x _ {1} \dots x _ {d} $ are homogeneous (so that $ B $ is also graded), then the property of $ A $ of being a free $ B $- module does not depend on the choice of $ B $.

References

[1] E. Noether, "Abstrakter Aufbau der Idealtheorie in algebraischen Zahl und Funktionenkörpern" Math. Ann. , 96 (1927) pp. 26–61
[2] D. Hilbert, "Ueber die vollen Invariantensysteme" Math. Ann. , 42 (1893) pp. 313–373
[3] M. Atiyah, I.G. Macdonald, "Introduction to commutative algebra" , Addison-Wesley (1969)
[4] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[5] O. Zariski, P. Samuel, "Commutative algebra" , 1–2 , v. Nostrand (1958–1960) ((reprinted: Springer, 1975))
[6] S. Lang, "Algebra" , Addison-Wesley (1974)

V.L. Popov

How to Cite This Entry:
Noether theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Noether_theorem&oldid=16595
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article