Namespaces
Variants
Actions

Difference between revisions of "Newton-Cotes quadrature formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
n0665101.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/N066/N.0606510 Newton\ANDCotes quadrature formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The interpolation [[Quadrature formula|quadrature formula]]
 
The interpolation [[Quadrature formula|quadrature formula]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665101.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  f ( x)  dx  \cong \
 +
( b - a)
 +
\sum _ {k = 0 } ^ { n }
 +
B _ {k}  ^ {(} n)
 +
f ( x _ {k}  ^ {(} n) )
 +
$$
 +
 
 +
for the computation of an integral over a finite interval  $  [ a, b] $,
 +
with nodes  $  x _ {k}  ^ {(} n) = a + kh $,
 +
$  k = 0 \dots n $,
 +
where  $  n $
 +
is a natural number,  $  h = ( b - a)/n $,
 +
and the number of nodes is  $  N = n + 1 $.  
 +
The coefficients are determined by the fact that the quadrature formula is interpolational, that is,
  
for the computation of an integral over a finite interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665102.png" />, with nodes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665104.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665105.png" /> is a natural number, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665106.png" />, and the number of nodes is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665107.png" />. The coefficients are determined by the fact that the quadrature formula is interpolational, that is,
+
$$
 +
B _ {k}  ^ {(} n= \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665108.png" /></td> </tr></table>
+
\frac{(- 1) ^ {n - k } }{k! ( n - k)! n }
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n0665109.png" /> all coefficients are positive, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651011.png" /> there are both positive and negative ones among them. The algebraic degree of accuracy (the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651012.png" /> such that the formula is exact for all polynomials of degree at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651013.png" /> and not exact for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651014.png" />) is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651015.png" /> for odd <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651017.png" /> for even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651018.png" />. The simplest special cases of the Newton–Cotes quadrature formula are: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651021.png" />,
+
\int\limits _ { 0 } ^ { n }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651022.png" /></td> </tr></table>
+
\frac{t ( t - 1) \dots ( t - n) }{t - k }
 +
  dt.
 +
$$
  
the [[Trapezium formula|trapezium formula]]; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651025.png" />,
+
For  $  n = 1 \dots 7 , 9 $
 +
all coefficients are positive, for  $  n = 8 $
 +
and  $  n \geq  10 $
 +
there are both positive and negative ones among them. The algebraic degree of accuracy (the number  $  d $
 +
such that the formula is exact for all polynomials of degree at most  $  d $
 +
and not exact for  $  x ^ {d + 1 } $)
 +
is  $  n $
 +
for odd  $  n $
 +
and  $  n + 1 $
 +
for even  $  n $.  
 +
The simplest special cases of the Newton–Cotes quadrature formula are: n = 1 $,  
 +
$  h = b - a $,
 +
$  N = 2 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651026.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  f ( x)  dx  \cong \
 +
{
 +
\frac{b - a }{2}
 +
} [ f ( a) + f ( b)],
 +
$$
  
the [[Simpson formula|Simpson formula]]; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651029.png" />,
+
the [[Trapezium formula|trapezium formula]]; $  n = 2 $,  
 +
$  h = ( b - a)/2 $,  
 +
$  N = 3 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651030.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }
 +
f ( x)  dx  \cong \
 +
{
 +
\frac{b - a }{6}
 +
}
 +
\left [ f ( a) + 4f \left ( {
 +
\frac{a + b }{2}
 +
} \right ) + f ( b)
 +
\right ] ,
 +
$$
  
the  "three-eighths" quadrature formula. For large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651031.png" /> the Newton–Cotes formula is seldom used (because of the property of the coefficients for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651032.png" /> mentioned above). One prefers to use for small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651033.png" /> the compound Newton–Cotes quadrature formulas, namely, the trapezium formula and Simpson's formula.
+
the [[Simpson formula|Simpson formula]]; $ n = 3 $,
 +
$  h = ( b - a)/3 $,  
 +
$  N = 4 $,
  
The coefficients of the Newton–Cotes quadrature formula for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651034.png" /> from 1 to 20 are listed in [[#References|[3]]].
+
$$
 +
\int\limits _ { a } ^ { b }
 +
f ( x)  dx  \cong \
 +
{
 +
\frac{b - a }{8}
 +
}
 +
\left [ f ( a) + 3f ( a + h) + 3f ( a + 2h) + f ( b) \right ] ,
 +
$$
  
The formula first appeared in a letter from I. Newton to G. Leibniz in 1676 (see [[#References|[1]]]) and later in the book [[#References|[2]]] by R. Cotes, where the coefficients of the formula are given for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066510/n06651035.png" /> from 1 to 10.
+
the  "three-eighths"  quadrature formula. For large  $  n $
 +
the Newton–Cotes formula is seldom used (because of the property of the coefficients for  $  n \geq  10 $
 +
mentioned above). One prefers to use for small  $  n $
 +
the compound Newton–Cotes quadrature formulas, namely, the trapezium formula and Simpson's formula.
 +
 
 +
The coefficients of the Newton–Cotes quadrature formula for  $  n $
 +
from 1 to 20 are listed in [[#References|[3]]].
 +
 
 +
The formula first appeared in a letter from I. Newton to G. Leibniz in 1676 (see [[#References|[1]]]) and later in the book [[#References|[2]]] by R. Cotes, where the coefficients of the formula are given for n $
 +
from 1 to 10.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I. Newton,  "Mathematical principles of natural philosophy"  A.N. Krylov (ed.) , ''Collected works'' , '''7''' , Moscow-Leningrad  (1936)  (In Russian; translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Cotes,  "Harmonia Mensurarum" , '''1–2''' , London  (1722)  (Published by R. Smith after Cotes' death)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Krylov,  L.T. Shul'gina,  "Handbook on numerical integration" , Moscow  (1966)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I. Newton,  "Mathematical principles of natural philosophy"  A.N. Krylov (ed.) , ''Collected works'' , '''7''' , Moscow-Leningrad  (1936)  (In Russian; translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Cotes,  "Harmonia Mensurarum" , '''1–2''' , London  (1722)  (Published by R. Smith after Cotes' death)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Krylov,  L.T. Shul'gina,  "Handbook on numerical integration" , Moscow  (1966)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:02, 6 June 2020


The interpolation quadrature formula

$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ ( b - a) \sum _ {k = 0 } ^ { n } B _ {k} ^ {(} n) f ( x _ {k} ^ {(} n) ) $$

for the computation of an integral over a finite interval $ [ a, b] $, with nodes $ x _ {k} ^ {(} n) = a + kh $, $ k = 0 \dots n $, where $ n $ is a natural number, $ h = ( b - a)/n $, and the number of nodes is $ N = n + 1 $. The coefficients are determined by the fact that the quadrature formula is interpolational, that is,

$$ B _ {k} ^ {(} n) = \ \frac{(- 1) ^ {n - k } }{k! ( n - k)! n } \int\limits _ { 0 } ^ { n } \frac{t ( t - 1) \dots ( t - n) }{t - k } dt. $$

For $ n = 1 \dots 7 , 9 $ all coefficients are positive, for $ n = 8 $ and $ n \geq 10 $ there are both positive and negative ones among them. The algebraic degree of accuracy (the number $ d $ such that the formula is exact for all polynomials of degree at most $ d $ and not exact for $ x ^ {d + 1 } $) is $ n $ for odd $ n $ and $ n + 1 $ for even $ n $. The simplest special cases of the Newton–Cotes quadrature formula are: $ n = 1 $, $ h = b - a $, $ N = 2 $,

$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{2} } [ f ( a) + f ( b)], $$

the trapezium formula; $ n = 2 $, $ h = ( b - a)/2 $, $ N = 3 $,

$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{6} } \left [ f ( a) + 4f \left ( { \frac{a + b }{2} } \right ) + f ( b) \right ] , $$

the Simpson formula; $ n = 3 $, $ h = ( b - a)/3 $, $ N = 4 $,

$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{8} } \left [ f ( a) + 3f ( a + h) + 3f ( a + 2h) + f ( b) \right ] , $$

the "three-eighths" quadrature formula. For large $ n $ the Newton–Cotes formula is seldom used (because of the property of the coefficients for $ n \geq 10 $ mentioned above). One prefers to use for small $ n $ the compound Newton–Cotes quadrature formulas, namely, the trapezium formula and Simpson's formula.

The coefficients of the Newton–Cotes quadrature formula for $ n $ from 1 to 20 are listed in [3].

The formula first appeared in a letter from I. Newton to G. Leibniz in 1676 (see [1]) and later in the book [2] by R. Cotes, where the coefficients of the formula are given for $ n $ from 1 to 10.

References

[1] I. Newton, "Mathematical principles of natural philosophy" A.N. Krylov (ed.) , Collected works , 7 , Moscow-Leningrad (1936) (In Russian; translated from Latin)
[2] R. Cotes, "Harmonia Mensurarum" , 1–2 , London (1722) (Published by R. Smith after Cotes' death)
[3] V.I. Krylov, L.T. Shul'gina, "Handbook on numerical integration" , Moscow (1966) (In Russian)

Comments

The formulas above are often referred to as closed Newton–Cotes formulas, in contrast to open Newton–Cotes formulas, which do not include the end points as nodes.

References

[a1] H. Engels, "Numerical quadrature and cubature" , Acad. Press (1980)
[a2] H. Brass, "Quadraturverfahren" , Vandenhoeck & Ruprecht (1977)
[a3] P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984)
[a4] A.H. Stroud, "Numerical quadrature and solution of ordinary differential equations" , Springer (1974)
How to Cite This Entry:
Newton-Cotes quadrature formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Newton-Cotes_quadrature_formula&oldid=13155
This article was adapted from an original article by I.P. Mysovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article