Namespaces
Variants
Actions

Nevanlinna theorems

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Two fundamental theorems, proved by R. Nevanlinna (see [1], [2]), that are basic for the theory of value distribution of meromorphic functions (see Value-distribution theory). Let $ f ( z) $ be a meromorphic function on a disc

$$ K _ {R} = \{ {z } : {| z | < R \leq \infty } \} , $$

where $ R = \infty $ means that $ f ( z) $ is meromorphic in the entire open complex plane. For every $ r $, $ 0 \leq r < R $, the proximity function of $ f ( z) $ to a number $ a $ is defined by

$$ m ( r, \infty , f ) = \ \frac{1}{2 \pi } \int\limits _ { 0 } ^ { {2 } \pi } \mathop{\rm ln} ^ {+} | f ( re ^ {i \theta } ) | d \theta , $$

$$ m ( r, a, f ) = m \left ( r, \infty , \frac{1}{f - a } \right ) ,\ a \neq \infty , $$

and the counting function of the number of $ a $- points of $ f ( z) $ by

$$ N ( r, a, f ) = \ \int\limits _ { 0 } ^ { r } \frac{n ( t, a, f ) - n ( 0, a, f ) }{t} \ dt + n ( 0, a, f ) \mathop{\rm ln} r, $$

where $ n ( t, a, f ) $ denotes the number of $ a $- points of $ f ( z) $, counting multiplicities, in the disc $ \{ {z } : {| z | \leq t } \} $, i.e. the number of elements of $ f ^ { - 1 } ( a ) \cap \{ {z } : {| z | \leq t } \} $, and $ \mathop{\rm ln} ^ {+} x = \mathop{\rm ln} x $ for $ x \geq 1 $, $ \mathop{\rm ln} ^ {+} x = 0 $ for $ 0 \leq x < 1 $.

The function $ T ( r, f ) = m ( r, \infty , f ) + N ( r, \infty , f ) $ is called the Nevanlinna characteristic of $ f ( z) $.

Nevanlinna's first theorem. For any function $ f ( z) $ that is meromorphic on a disc $ K _ {R} $, for any $ r $, $ 0 \leq r < R $, and any complex number $ a $,

$$ \tag{1 } m ( r, a, f ) + N ( r, a, f ) = T ( r, f ) + \phi ( r, a), $$

where

$$ | \phi ( r, a) | \leq \mathop{\rm ln} ^ {+} | a | + | \mathop{\rm ln} | c | | + \mathop{\rm ln} 2. $$

Here $ c $ denotes the first non-zero coefficient in the Laurent expansion about zero of the function $ f ( z) - a $ if $ f ( 0) = a \neq \infty $, and of $ f ( z) $ itself if $ f ( 0) = \infty $. Thus, for a function whose characteristic $ T ( r, f ) $ increases without limit as $ r \rightarrow R $, the sum $ m ( r, a, f ) + N ( r, a, f ) $, considered for different values of $ a $, is equal to the value $ T ( r, f ) $ up to a bounded additive term $ \phi ( r, a) $. In this sense, all values $ a $ are equivalent for any function $ f ( z) $ that is meromorphic on $ K _ {R} $. For this reason, the theory of value distribution of meromorphic functions concerns itself with questions about the asymptotic behaviour of one term, $ m ( r, a, f ) $ or $ N ( r, a, f ) $, in the invariant sum (1).

Nevanlinna's second theorem shows that, for almost all points $ a $, the principal role in the sum (1) is played by $ N ( r, a, f ) $. The statement of the theorem is as follows.

For any function $ f ( z) $ that is meromorphic on a disc $ K _ {R} = \{ {z } : {| z | < R \leq \infty } \} $, every $ q $, $ q \geq 3 $, and any distinct numbers $ \{ a _ {k} \} _ {k = 1 } ^ {q} $ in the extended complex plane, the relation

$$ \tag{2 } \sum _ {k = 1 } ^ { q } m ( r, a _ {k} , f ) \leq \ 2T ( r, f ) - N _ {1} ( r, f ) + S ( r, f ) $$

holds, where

$$ N _ {1} ( r, f ) = N ( r , \infty , 1 / f ^ { \prime } ) + 2N ( r, \infty , f ) - N ( r, \infty , f ^ { \prime } ), $$

and the term $ S ( r, f ) $ has the following properties:

1) If $ R = \infty $, i.e. if $ f ( z) $ is meromorphic in the entire open complex plane, then

$$ S ( r, f ) = O ( \mathop{\rm ln} ( r \cdot T ( r, f ))), $$

as $ r \rightarrow \infty $, for all values of $ r $ with the possible exception of a set $ E $ of finite total measure.

2) If $ R < \infty $, then

$$ S ( r, f ) = \ O \left ( \mathop{\rm ln} \left ( \frac{R}{R - r } T ( r, f ) \right ) \right ) , $$

as $ r \rightarrow R $, for all values of $ r $ with the possible exception of a set $ E $ for which

$$ \int\limits _ { E } \frac{dr}{R - r } < \infty . $$

The function $ N _ {1} ( r, f ) $ is non-decreasing with increasing $ r $, and therefore the right-hand term in (2) cannot increase as $ r \rightarrow R $ more rapidly than $ 2T ( r, f ) $ outside some exceptional set $ E $.

References

[1] R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)
[2] R. Nevanlinna, "Le théorème de Picard–Borel et la théorie des fonctions méromorphes" , Gauthier-Villars (1929)
[3] H. Weyl, "Meromorphic functions and analytic curves" , Princeton Univ. Press (1943)
[4] L. Ahlfors, "The theory of meromorphic curves" Acta Soc. Sci. Fennica. Nova Ser. A , 3 : 4 (1941) pp. 1–31
[5] H. Cartan, "Sur les zéros des combinations linéares de fonctions holomorphes données" Mathematica (Cluj) , 7 (1933) pp. 5–31
[6] P. Griffiths, J. King, "Nevanlinna theory and holomorphic mappings between algebraic varieties" Acta Math. , 130 (1973) pp. 145–220
[7] V.P. Petrenko, "The growth of meromorphic functions" , Khar'kov (1978) (In Russian)

Comments

References

[a1] W.K. Hayman, "Meromorphic functions" , Oxford Univ. Press (1964)
[a2] P.A. Griffiths, "Entire holomorphic mappings in one and several complex variables" , Annals Math. Studies , 85 , Princeton Univ. Press (1976)
How to Cite This Entry:
Nevanlinna theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nevanlinna_theorems&oldid=47963
This article was adapted from an original article by V.P. Petrenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article