Namespaces
Variants
Actions

Difference between revisions of "Movable singular point"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
(TeX)
 
Line 1: Line 1:
A singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650701.png" /> of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650702.png" /> of a differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650703.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650704.png" /> is an analytic function), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650705.png" /> is considered as a function of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650706.png" />, which is such that solutions to the same equation with initial data close to the original data have singular points close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650707.png" /> but not coincident with it. The classical example of a movable singular point arises when considering the equation
+
{{TEX|done}}
 +
A singular point $z_0$ of the solution $w(z)$ of a differential equation $F(z,w,w')=0$ ($F$ is an analytic function), where $w(z)$ is considered as a function of the complex variable $z$, which is such that solutions to the same equation with initial data close to the original data have singular points close to $z_0$ but not coincident with it. The classical example of a movable singular point arises when considering the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650708.png" /></td> </tr></table>
+
$$\frac{dw}{dz}=\frac{P(z,w)}{Q(z,w)},$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m0650709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507010.png" /> are holomorphic functions in a certain region of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507011.png" />. If the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507012.png" /> is irreducible and is projected along the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507013.png" />-axis on a region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507014.png" />, then all points in the region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507015.png" /> are movable singular points; for the solution with initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507016.png" />, where
+
where $P$ and $Q$ are holomorphic functions in a certain region of the space $\mathbf C^2$. If the surface $\{Q=0\}$ is irreducible and is projected along the $Ow$-axis on a region $\Omega\subset Oz$, then all points in the region $\Omega$ are movable singular points; for the solution with initial condition $(z_0,w_0)$, where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507017.png" /></td> </tr></table>
+
$$Q(z_0,w_0)=0\neq P(z_0,w_0),$$
  
the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507018.png" /> is an [[Algebraic branch point|algebraic branch point]].
+
the point $z_0$ is an [[Algebraic branch point|algebraic branch point]].
  
 
====References====
 
====References====
Line 17: Line 18:
 
For equations of the form
 
For equations of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507019.png" /></td> </tr></table>
+
$$\frac{d^2w}{dz^2}=R\left(\frac{dw}{dz},w,z\right),$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507020.png" /> is rational in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507022.png" /> and analytic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065070/m06507023.png" />, it is known which equations have only non-movable singularities, cf. [[Painlevé equation|Painlevé equation]] and [[#References|[a1]]].
+
where $R$ is rational in $dw/dz$ and $w$ and analytic in $z$, it is known which equations have only non-movable singularities, cf. [[Painlevé equation|Painlevé equation]] and [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) {{MR|1570308}} {{MR|0010757}} {{MR|1524980}} {{MR|0000325}} {{MR|1522581}} {{ZBL|0612.34002}} {{ZBL|0191.09801}} {{ZBL|0063.02971}} {{ZBL|0022.13601}} {{ZBL|65.1253.02}} {{ZBL|53.0399.07}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) {{MR|1570308}} {{MR|0010757}} {{MR|1524980}} {{MR|0000325}} {{MR|1522581}} {{ZBL|0612.34002}} {{ZBL|0191.09801}} {{ZBL|0063.02971}} {{ZBL|0022.13601}} {{ZBL|65.1253.02}} {{ZBL|53.0399.07}} </TD></TR></table>

Latest revision as of 14:56, 17 July 2014

A singular point $z_0$ of the solution $w(z)$ of a differential equation $F(z,w,w')=0$ ($F$ is an analytic function), where $w(z)$ is considered as a function of the complex variable $z$, which is such that solutions to the same equation with initial data close to the original data have singular points close to $z_0$ but not coincident with it. The classical example of a movable singular point arises when considering the equation

$$\frac{dw}{dz}=\frac{P(z,w)}{Q(z,w)},$$

where $P$ and $Q$ are holomorphic functions in a certain region of the space $\mathbf C^2$. If the surface $\{Q=0\}$ is irreducible and is projected along the $Ow$-axis on a region $\Omega\subset Oz$, then all points in the region $\Omega$ are movable singular points; for the solution with initial condition $(z_0,w_0)$, where

$$Q(z_0,w_0)=0\neq P(z_0,w_0),$$

the point $z_0$ is an algebraic branch point.

References

[1] V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) MR0100119


Comments

For equations of the form

$$\frac{d^2w}{dz^2}=R\left(\frac{dw}{dz},w,z\right),$$

where $R$ is rational in $dw/dz$ and $w$ and analytic in $z$, it is known which equations have only non-movable singularities, cf. Painlevé equation and [a1].

References

[a1] E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) MR1570308 MR0010757 MR1524980 MR0000325 MR1522581 Zbl 0612.34002 Zbl 0191.09801 Zbl 0063.02971 Zbl 0022.13601 Zbl 65.1253.02 Zbl 53.0399.07
How to Cite This Entry:
Movable singular point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Movable_singular_point&oldid=32469
This article was adapted from an original article by Yu.S. Il'yashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article