Namespaces
Variants
Actions

Difference between revisions of "Monodromy theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A sufficient criterion for the single-valuedness of a [[Branch of an analytic function|branch of an analytic function]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646901.png" /> be a simply-connected domain in the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646903.png" />. Now, if an analytic function element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646904.png" />, with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646905.png" />, can be analytically continued along any path in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646906.png" />, then the branch of an analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646907.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646908.png" />, arising by this [[Analytic continuation|analytic continuation]] is single-valued in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m0646909.png" />. In other words, the branch of the analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469010.png" /> defined by the simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469011.png" /> and the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469012.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469013.png" /> must be single-valued. Another equivalent formulation is: If an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469014.png" /> can be analytically continued along all paths in an arbitrary domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469015.png" />, then the result of this continuation at any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469016.png" /> (that is, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469017.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469018.png" />) is the same for all homotopic paths in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469019.png" /> joining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469020.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469021.png" />.
+
{{TEX|done}}
  
The monodromy theorem is valid also for analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469022.png" /> defined in domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064690/m06469023.png" /> on Riemann surfaces or on Riemann domains. See also [[Complete analytic function|Complete analytic function]].
+
A sufficient criterion for the single-valuedness of a [[Branch of an analytic function|branch of an analytic function]]. Let $D$ be a simply-connected domain in the complex space $\mathbf C^n$, $n\geq1$. Now, if an analytic function element $\Sigma(z^0;r)$, with centre $z^0\in D$, can be analytically continued along any path in $D$, then the branch of an analytic function $f(z)$, $z=(z_1,\dots,z_n)$, arising by this [[Analytic continuation|analytic continuation]] is single-valued in $D$. In other words, the branch of the analytic function $f(z)$ defined by the simply-connected domain $D$ and the element $\Sigma(z^0;r)$ with centre $z^0\in D$ must be single-valued. Another equivalent formulation is: If an element $\Sigma(z^0;r)$ can be analytically continued along all paths in an arbitrary domain $D\subset\mathbf C^n$, then the result of this continuation at any point $z^*\in D$ (that is, the element $\Sigma(z^*;r^*)$ with centre $z^*$) is the same for all homotopic paths in $D$ joining $z^0$ to $z^*$.
 +
 
 +
The monodromy theorem is valid also for analytic functions $f(z)$ defined in domains $D$ on Riemann surfaces or on Riemann domains. See also [[Complete analytic function|Complete analytic function]].
  
 
====References====
 
====References====

Latest revision as of 10:59, 27 June 2015


A sufficient criterion for the single-valuedness of a branch of an analytic function. Let $D$ be a simply-connected domain in the complex space $\mathbf C^n$, $n\geq1$. Now, if an analytic function element $\Sigma(z^0;r)$, with centre $z^0\in D$, can be analytically continued along any path in $D$, then the branch of an analytic function $f(z)$, $z=(z_1,\dots,z_n)$, arising by this analytic continuation is single-valued in $D$. In other words, the branch of the analytic function $f(z)$ defined by the simply-connected domain $D$ and the element $\Sigma(z^0;r)$ with centre $z^0\in D$ must be single-valued. Another equivalent formulation is: If an element $\Sigma(z^0;r)$ can be analytically continued along all paths in an arbitrary domain $D\subset\mathbf C^n$, then the result of this continuation at any point $z^*\in D$ (that is, the element $\Sigma(z^*;r^*)$ with centre $z^*$) is the same for all homotopic paths in $D$ joining $z^0$ to $z^*$.

The monodromy theorem is valid also for analytic functions $f(z)$ defined in domains $D$ on Riemann surfaces or on Riemann domains. See also Complete analytic function.

References

[1] A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian)
[2] S. Stoilov, "The theory of functions of a complex variable" , 1–2 , Moscow (1962) (In Russian; translated from Rumanian)
[3] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)


Comments

References

[a1] J.B. Conway, "Functions of one complex variable" , Springer (1978)
How to Cite This Entry:
Monodromy theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monodromy_theorem&oldid=36520
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article