Namespaces
Variants
Actions

Difference between revisions of "Mittag-Leffler theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 28: Line 28:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Mittag-Leffler,   "En metod att analytisk framställa en funktion at rationel karacte..." ''Öfversigt Kongl. Vetenskap-Akad. Förhandlinger'' , '''33''' (1876) pp. 3–16</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Mittag-Leffler,   "Sur la répresentation analytique des fonctions monogènes uniformes d'une variable indépendante" ''Acta Math.'' , '''4''' (1884) pp. 1–79</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Goursat,   "Cours d'analyse mathématique" , Gauthier-Villars (1927)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Markushevich,   "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> B.V. Shabat,   "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L. Hörmander,   "An introduction to complex analysis in several variables" , North-Holland (1973)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Behnke,   F. Sommer,   "Theorie der analytischen Funktionen einer komplexen Veränderlichen" , Springer (1972)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L. Schwartz,   "Analyse mathématique" , '''2''' , Hermann (1967)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Mittag-Leffler, "En metod att analytisk framställa en funktion at rationel karacte..." ''Öfversigt Kongl. Vetenskap-Akad. Förhandlinger'' , '''33''' (1876) pp. 3–16</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique des fonctions monogènes uniformes d'une variable indépendante" ''Acta Math.'' , '''4''' (1884) pp. 1–79</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Goursat, "Cours d'analyse mathématique" , Gauthier-Villars (1927) {{MR|1296666}} {{MR|1296665}} {{MR|1296664}} {{MR|1519291}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian) {{MR|}} {{ZBL|0799.32001}} {{ZBL|0732.32001}} {{ZBL|0732.30001}} {{ZBL|0578.32001}} {{ZBL|0574.30001}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973) {{MR|0344507}} {{ZBL|0271.32001}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Behnke, F. Sommer, "Theorie der analytischen Funktionen einer komplexen Veränderlichen" , Springer (1972) {{MR|1532738}} {{MR|0147622}} {{MR|0073682}} {{ZBL|0273.30001}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L. Schwartz, "Analyse mathématique" , '''2''' , Hermann (1967) {{MR|0226973}} {{MR|0226972}} {{ZBL|0171.01301}} </TD></TR></table>
  
  
Line 36: Line 36:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.B. Conway,   "Functions of one complex variable" , Springer (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Heins,   "Complex function theory" , Acad. Press (1968)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.B. Conway, "Functions of one complex variable" , Springer (1978) {{MR|0503901}} {{ZBL|0887.30003}} {{ZBL|0277.30001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Heins, "Complex function theory" , Acad. Press (1968) {{MR|0239054}} {{ZBL|0155.11501}} </TD></TR></table>

Revision as of 16:59, 15 April 2012

The Mittag-Leffler theorem on expansion of a meromorphic function (see , ) is one of the basic theorems in analytic function theory, giving for meromorphic functions an analogue of the expansion of a rational function into the simplest partial fractions. Let be a sequence of distinct complex numbers,

and let be a sequence of rational functions of the form

(1)

so that is the unique pole of the corresponding function . Then there are meromorphic functions in the complex -plane having poles at , and only there, with given principal parts (1) of the Laurent series corresponding to the points . All these functions are representable in the form of a Mittag-Leffler expansion

(2)

where is a polynomial chosen in dependence of and so that the series (2) is uniformly convergent (after the removal of a finite number of terms) on any compact set and is an arbitrary entire function.

The Mittag-Leffler theorem implies that any given meromorphic function in with poles and corresponding principal parts of the Laurent expansion of in a neighbourhood of can be expanded in a series (2) where the entire function is determined by . G. Mittag-Leffler gave a general construction of the polynomials ; finding the entire function relative to a given is sometimes a more difficult problem. To obtain (2) it is possible to apply methods of the theory of residues (cf. Residue of an analytic function, see also –).

A generalization of the quoted theorem, also due to Mittag-Leffler, states that for any domain of the extended complex plane , any sequence of points all limit points of which are in the boundary , and corresponding principal parts (1), there is a function , meromorphic in , having poles at , and only there, with the given principal parts (1). In this form the Mittag-Leffler theorem generalizes to open Riemann surfaces (see ); for the existence of meromorphic functions on compact Riemann surfaces with given singularities see Abelian differential; Differential on a Riemann surface; Riemann–Roch theorem. The Mittag-Leffler theorem is also true for abstract meromorphic functions , , with values in a Banach space (see ).

Another generalization of the Mittag-Leffler theorem states that for any sequence , , , and corresponding functions

that are entire functions of the variable , there is a single-valued analytic function having singular points at , and only there, and with principal parts (see ).

For analytic functions of several complex variables a generalization of the Mittag-Leffler problem on the construction of a function with given singularities is the first (additive) Cousin problem (cf. Cousin problems). In this connection the following equivalent statement of the Mittag-Leffler theorem is often useful. Let , where the are open sets in , and let there be given meromorphic functions , respectively, on the sets , where the differences are regular functions on the intersections for all and . Then there is on a meromorphic function such that the differences are regular on for all (see , ).

For the Mittag-Leffler theorem on the expansion of single-valued branches of an analytic function in a star see Star of a function element.

References

[1] G. Mittag-Leffler, "En metod att analytisk framställa en funktion at rationel karacte..." Öfversigt Kongl. Vetenskap-Akad. Förhandlinger , 33 (1876) pp. 3–16
[2] G. Mittag-Leffler, "Sur la répresentation analytique des fonctions monogènes uniformes d'une variable indépendante" Acta Math. , 4 (1884) pp. 1–79
[3] E. Goursat, "Cours d'analyse mathématique" , Gauthier-Villars (1927) MR1296666 MR1296665 MR1296664 MR1519291
[4] A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian) MR0444912 Zbl 0357.30002
[5] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian) Zbl 0799.32001 Zbl 0732.32001 Zbl 0732.30001 Zbl 0578.32001 Zbl 0574.30001
[6] L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973) MR0344507 Zbl 0271.32001
[7] H. Behnke, F. Sommer, "Theorie der analytischen Funktionen einer komplexen Veränderlichen" , Springer (1972) MR1532738 MR0147622 MR0073682 Zbl 0273.30001
[8] L. Schwartz, "Analyse mathématique" , 2 , Hermann (1967) MR0226973 MR0226972 Zbl 0171.01301


Comments

References

[a1] J.B. Conway, "Functions of one complex variable" , Springer (1978) MR0503901 Zbl 0887.30003 Zbl 0277.30001
[a2] M. Heins, "Complex function theory" , Acad. Press (1968) MR0239054 Zbl 0155.11501
How to Cite This Entry:
Mittag-Leffler theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mittag-Leffler_theorem&oldid=19271
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article