Namespaces
Variants
Actions

Difference between revisions of "Metric dimension"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fix tex)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A numerical characteristic of a compact set, defined in terms of coverings of  "standard measure" , the number of which defines the metric dimension. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636401.png" /> be a compact set, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636402.png" /> be the minimal number of sets with diameter not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636403.png" /> that are needed in order to cover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636404.png" />. This function, depending on the metric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636405.png" />, takes integer values for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636406.png" />, and increases without bound as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636407.png" />; it is called the volume function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636408.png" />. The metric order of the compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m0636409.png" /> is the number
+
<!--
 +
m0636401.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/M063/M.0603640 Metric dimension
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364010.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
This quantity is not yet a topological invariant. Thus, the metric order of a curve in the sense of Jordan (cf. [[Line (curve)|Line (curve)]]) with the Euclidean metric is equal to 1, but for a curve in the sense of Jordan passing through a perfect totally-disconnected set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364011.png" /> of positive measure, this value is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364012.png" />. However, the greatest lower bound of the metric orders for all metrics on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364013.png" /> (called the metric dimension) is equal to the [[Lebesgue dimension|Lebesgue dimension]] (the Pontryagin–Shnirel'man theorem, 1931, see [[#References|[1]]]).
+
A numerical characteristic of a compact set, defined in terms of coverings of  "standard measure" , the number of which defines the metric dimension. Let  $  F $
 +
be a compact set, and let  $  N _ {F} ( \epsilon ) $
 +
be the minimal number of sets with diameter not exceeding  $  \epsilon $
 +
that are needed in order to cover  $  F $.
 +
This function, depending on the metric in  $  F $,
 +
takes integer values for all  $  \epsilon > 0 $,
 +
and increases without bound as  $  \epsilon \rightarrow 0 $;
 +
it is called the volume function of  $  F $.
 +
The metric order of the compact set  $  F $
 +
is the number
 +
 
 +
$$
 +
k  =  \liminf
 +
\left (
 +
-
 +
\frac{ \mathop{\rm ln}  N _ {F} ( \epsilon ) }{ \mathop{\rm ln}  \epsilon }
 +
 
 +
\right ) .
 +
$$
 +
 
 +
This quantity is not yet a topological invariant. Thus, the metric order of a curve in the sense of Jordan (cf. [[Line (curve)|Line (curve)]]) with the Euclidean metric is equal to 1, but for a curve in the sense of Jordan passing through a perfect totally-disconnected set in $  \mathbf R  ^ {n} $
 +
of positive measure, this value is equal to $  n $.  
 +
However, the greatest lower bound of the metric orders for all metrics on $  F $(
 +
called the metric dimension) is equal to the [[Lebesgue dimension|Lebesgue dimension]] (the Pontryagin–Shnirel'man theorem, 1931, see [[#References|[1]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Hurevicz,  G. Wallman,  "Dimension theory" , Princeton Univ. Press  (1948)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Hurevicz,  G. Wallman,  "Dimension theory" , Princeton Univ. Press  (1948)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Line 17: Line 46:
 
One example is the [[Hausdorff dimension|Hausdorff dimension]].
 
One example is the [[Hausdorff dimension|Hausdorff dimension]].
  
Another example is obtained by modifying the definition of the covering dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364014.png" /> (see [[Dimension|Dimension]]): If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364015.png" /> is a metric space, one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364016.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364017.png" /> if and only if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364018.png" /> there is an open covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364020.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364022.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364024.png" /> means that no point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364025.png" /> is an element of more than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364026.png" /> elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364027.png" />. One can show that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063640/m06364028.png" /> and that these inequalities are best possible, see [[#References|[a1]]].
+
Another example is obtained by modifying the definition of the covering dimension $  \mathop{\rm dim} $(
 +
see [[Dimension|Dimension]]): If $  ( X , d ) $
 +
is a metric space, one defines $  \mu  \mathop{\rm dim}  ( X , d ) $
 +
by $  \mu  \mathop{\rm dim}  ( X , d ) \leq  n $
 +
if and only if for every $  \epsilon > 0 $
 +
there is an open covering $  \mathfrak U $
 +
of $  X $
 +
with $  \textrm{ mesh }  \mathfrak U \leq  n + 1 $
 +
and $  \mathop{\rm ord}  \mathfrak U < \epsilon $.  
 +
Here $  \textrm{ mesh }  \mathfrak U = \sup \{ { \mathop{\rm diam}  ( U) } : {U \in \mathfrak U } \} $
 +
and $  \mathop{\rm ord}  \mathfrak U \leq  n + 1 $
 +
means that no point of $  X $
 +
is an element of more than $  n + 1 $
 +
elements of $  \mathfrak U $.  
 +
One can show that $  \mu  \mathop{\rm dim}  ( X , d ) \leq  \mathop{\rm dim}  X \leq  2 \mu  \mathop{\rm dim}  ( X , d ) $
 +
and that these inequalities are best possible, see [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , North-Holland &amp; PWN  (1978)  pp. 19; 50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.-I. Nagata,  "Modern dimension theory" , Interscience  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , North-Holland &amp; PWN  (1978)  pp. 19; 50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.-I. Nagata,  "Modern dimension theory" , Interscience  (1965)</TD></TR></table>

Latest revision as of 19:47, 3 February 2021


A numerical characteristic of a compact set, defined in terms of coverings of "standard measure" , the number of which defines the metric dimension. Let $ F $ be a compact set, and let $ N _ {F} ( \epsilon ) $ be the minimal number of sets with diameter not exceeding $ \epsilon $ that are needed in order to cover $ F $. This function, depending on the metric in $ F $, takes integer values for all $ \epsilon > 0 $, and increases without bound as $ \epsilon \rightarrow 0 $; it is called the volume function of $ F $. The metric order of the compact set $ F $ is the number

$$ k = \liminf \left ( - \frac{ \mathop{\rm ln} N _ {F} ( \epsilon ) }{ \mathop{\rm ln} \epsilon } \right ) . $$

This quantity is not yet a topological invariant. Thus, the metric order of a curve in the sense of Jordan (cf. Line (curve)) with the Euclidean metric is equal to 1, but for a curve in the sense of Jordan passing through a perfect totally-disconnected set in $ \mathbf R ^ {n} $ of positive measure, this value is equal to $ n $. However, the greatest lower bound of the metric orders for all metrics on $ F $( called the metric dimension) is equal to the Lebesgue dimension (the Pontryagin–Shnirel'man theorem, 1931, see [1]).

References

[1] W. Hurevicz, G. Wallman, "Dimension theory" , Princeton Univ. Press (1948)

Comments

Metric dimension makes sense for non-compact separable metrizable spaces (using totally bounded metrics), and the Pontryagin–Shnirel'man theorem extends to them. This was shown by E. Szpilrajn-Marczewski. See [a2].

There are also other types of metric-dependent dimension functions.

One example is the Hausdorff dimension.

Another example is obtained by modifying the definition of the covering dimension $ \mathop{\rm dim} $( see Dimension): If $ ( X , d ) $ is a metric space, one defines $ \mu \mathop{\rm dim} ( X , d ) $ by $ \mu \mathop{\rm dim} ( X , d ) \leq n $ if and only if for every $ \epsilon > 0 $ there is an open covering $ \mathfrak U $ of $ X $ with $ \textrm{ mesh } \mathfrak U \leq n + 1 $ and $ \mathop{\rm ord} \mathfrak U < \epsilon $. Here $ \textrm{ mesh } \mathfrak U = \sup \{ { \mathop{\rm diam} ( U) } : {U \in \mathfrak U } \} $ and $ \mathop{\rm ord} \mathfrak U \leq n + 1 $ means that no point of $ X $ is an element of more than $ n + 1 $ elements of $ \mathfrak U $. One can show that $ \mu \mathop{\rm dim} ( X , d ) \leq \mathop{\rm dim} X \leq 2 \mu \mathop{\rm dim} ( X , d ) $ and that these inequalities are best possible, see [a1].

References

[a1] R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50
[a2] J.-I. Nagata, "Modern dimension theory" , Interscience (1965)
How to Cite This Entry:
Metric dimension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Metric_dimension&oldid=14147
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article