Namespaces
Variants
Actions

Difference between revisions of "Method of extensions and restrictions"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (typos)
m (fixing superscript)
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:
 
Let  $  G $
 
Let  $  G $
 
be a [[Lie group|Lie group]] and let  $  K ( G) $
 
be a [[Lie group|Lie group]] and let  $  K ( G) $
be the class of  $  G $-
+
be the class of  $  G $-spaces with a left action of  $  G $
spaces with a left action of  $  G $
+
as transformation group on them. A  $  G $-restriction is a smooth surjective mapping
as transformation group on them. A  $  G $-
 
restriction is a smooth surjective mapping
 
  
 
$$  
 
$$  
Line 42: Line 40:
 
Here  $  l _ {g} $
 
Here  $  l _ {g} $
 
and  $  l _ {g}  ^ {1} $
 
and  $  l _ {g}  ^ {1} $
are the transformations of the  $  G $-
+
are the transformations of the  $  G $-spaces  $  X $
spaces  $  X $
 
 
and  $  Y $,  
 
and  $  Y $,  
 
respectively, determined by  $  g $.  
 
respectively, determined by  $  g $.  
Line 52: Line 49:
 
is a prolongation of  $  Y $.  
 
is a prolongation of  $  Y $.  
 
The class  $  K ( G) $
 
The class  $  K ( G) $
becomes a category with the  $  G $-
+
becomes a category with the  $  G $-restrictions as morphisms.
restrictions as morphisms.
 
  
Examples of  $  G $-
+
Examples of  $  G $-restrictions.
restrictions.
 
  
 
1) Let  $  T ( p, q) \in K (  \mathop{\rm GL} ( n, \mathbf R )) $
 
1) Let  $  T ( p, q) \in K (  \mathop{\rm GL} ( n, \mathbf R )) $
Line 89: Line 84:
 
acting on  $  P $
 
acting on  $  P $
 
from the right, and let  $  F \in K ( H) $
 
from the right, and let  $  F \in K ( H) $
be a left  $  H $-
+
be a left  $  H $-space. Fibre spaces associated with  $  P $
space. Fibre spaces associated with  $  P $
 
 
by objects from  $  K ( P) $
 
by objects from  $  K ( P) $
 
are spaces of the type
 
are spaces of the type
Line 102: Line 96:
  
 
$$  
 
$$  
( \xi , Y) h  =  ( \xi h, h  ^ {-} 1 Y),\ \  
+
( \xi , Y) h  =  ( \xi h, h  ^ {-1} Y),\ \  
 
( \xi , Y) \in P \times F,\ \  
 
( \xi , Y) \in P \times F,\ \  
 
h \in H.
 
h \in H.
Line 115: Line 109:
 
If  $  F, \Phi \in K ( H) $
 
If  $  F, \Phi \in K ( H) $
 
and  $  f:  F \rightarrow \Phi $
 
and  $  f:  F \rightarrow \Phi $
is an  $  H $-
+
is an  $  H $-restriction mapping, then, by construction,  $  F ( P) $
restriction mapping, then, by construction,  $  F ( P) $
 
 
and  $  \Phi ( P) f $
 
and  $  \Phi ( P) f $
 
induce a fibre-wise surjective mapping  $  f:  F ( P) \rightarrow \Phi ( P) $,  
 
induce a fibre-wise surjective mapping  $  f:  F ( P) \rightarrow \Phi ( P) $,  
called a  $  P $-
+
called a  $  P $-restriction. The  $  P $-restriction  $  \widetilde{f}  $
restriction. The  $  P $-
 
restriction  $  \widetilde{f}  $
 
 
is defined by
 
is defined by
  
Line 131: Line 122:
 
Thus, the class  $  K ( P) $
 
Thus, the class  $  K ( P) $
 
of fibre bundles associated with  $  P $
 
of fibre bundles associated with  $  P $
is a category with  $  P $-
+
is a category with  $  P $-restrictions  $  \widetilde{f}  $
restrictions  $  \widetilde{f}  $
 
 
as morphisms. The correspondence  $  F \mapsto F ( P) $,  
 
as morphisms. The correspondence  $  F \mapsto F ( P) $,  
 
$  f \mapsto \widetilde{f}  $
 
$  f \mapsto \widetilde{f}  $
 
is a bijective functor from the category  $  K ( H) $
 
is a bijective functor from the category  $  K ( H) $
 
to the category  $  K ( P) $.  
 
to the category  $  K ( P) $.  
Hence it is sufficient to study the restriction operation in the category of  $  H $-
+
Hence it is sufficient to study the restriction operation in the category of  $  H $-spaces.
spaces.
 
  
 
If  $  s:  M \rightarrow F ( P) $
 
If  $  s:  M \rightarrow F ( P) $
is a section of a fibre bundle  $  F ( P) $(
+
is a section of a fibre bundle  $  F ( P) $ (a field of geometric objects of type  $  F  $),  
a field of geometric objects of type  $  F  $),  
+
then the  $  P $-restriction  $  \widetilde{f}  :  F ( P) \rightarrow \Phi ( P) $
then the  $  P $-
 
restriction  $  \widetilde{f}  :  F ( P) \rightarrow \Phi ( P) $
 
 
associates the section  $  \widetilde{s}  = \widetilde{f}  \circ s $
 
associates the section  $  \widetilde{s}  = \widetilde{f}  \circ s $
 
of the restricted fibre bundle  $  \Phi ( P) $
 
of the restricted fibre bundle  $  \Phi ( P) $
Line 152: Line 139:
 
restricts the field of geometric objects  $  \widetilde{f}  \circ s ( x) $.  
 
restricts the field of geometric objects  $  \widetilde{f}  \circ s ( x) $.  
 
If  $  s ( x) $
 
If  $  s ( x) $
is the structure object of a  $  G $-
+
is the structure object of a  $  G $-structure, then the study of the  $  G $-structures and its invariants reduces largely to the search for restricting geometric objects. In the latter process, an important role is played by differential criteria for restrictions, formulated in terms of structure differential forms of fibre spaces forming the base of the method of restrictions and prolongations.
structure, then the study of the  $  G $-
 
structures and its invariants reduces largely to the search for restricting geometric objects. In the latter process, an important role is played by differential criteria for restrictions, formulated in terms of structure differential forms of fibre spaces forming the base of the method of restrictions and prolongations.
 
  
 
====References====
 
====References====

Latest revision as of 01:15, 19 March 2022


method of prolongations and restrictions

A method for studying various differential-geometric structures (cf. Differential-geometric structure) on smooth manifolds and their submanifolds. At the basis of this method there lies a differential-algebraic criterion for an operation that allows one to associate in an invariant (coordinate-free) way to a given structure structures intrinsically related to it, among them their differential invariants (cf. Differential invariant). Historically this method arose as a consequence of the moving-frame method as an invariant method for studying submanifolds of homogeneous spaces or of spaces with a connection. Subsequently the method of prolongations and restrictions was extended to the geometry of arbitrary fibre spaces (cf. Fibre space). In distinction from the aim of the moving-frame method — to construct a canonical field of frames and differential invariants of the unknown structure by means of subsequent restriction of corresponding principal fibre spaces — the method of prolongations and restrictions has as its aim the construction of invariants and invariantly associated structures without restricting the principal fibres of frames. The process of canonization of a frame is included in the method of prolongations and restrictions.

Let $ G $ be a Lie group and let $ K ( G) $ be the class of $ G $-spaces with a left action of $ G $ as transformation group on them. A $ G $-restriction is a smooth surjective mapping

$$ f: X \rightarrow Y,\ \ X, Y \in K ( G), $$

such that for any $ g \in G $ the following diagram is commutative:

$$ \begin{array}{rcl} X &\rightarrow ^ { f } & Y \\ {l _ {g} } \downarrow &{} &\downarrow {l _ {g} ^ {1} } \\ X &\rightarrow _ { f } & Y \\ \end{array} $$

Here $ l _ {g} $ and $ l _ {g} ^ {1} $ are the transformations of the $ G $-spaces $ X $ and $ Y $, respectively, determined by $ g $. In this case one says that $ Y $ is a restriction of $ X $ by means of $ f $, or that $ X $ is a prolongation of $ Y $. The class $ K ( G) $ becomes a category with the $ G $-restrictions as morphisms.

Examples of $ G $-restrictions.

1) Let $ T ( p, q) \in K ( \mathop{\rm GL} ( n, \mathbf R )) $ be the space of tensors of type $ ( p, q) $, $ p, q \geq 1 $. The contraction mapping

$$ T ( p, q) \rightarrow T ( p - 1, q - 1) $$

is a restriction. The complete contraction of tensors of $ T ( p, p) $,

$$ T ( p, p): T ( p, p) \rightarrow \mathbf R , $$

is an example of a restriction invariant.

2) If $ X, Y \in K ( G) $, then $ X \times Y $ restricts by means of $ \mathop{\rm pr} _ {X} $ and $ \mathop{\rm pr} _ {Y} $, respectively, to $ X $ and $ Y $. In other words, $ X \times Y $ is a prolongation of both $ X $ and $ Y $.

The concept of a restriction can be naturally generalized to classes of fibre spaces associated with principal fibre bundles. Let $ \pi : P ( M, H) \rightarrow M $ be a principal fibre bundle with structure group $ H $, acting on $ P $ from the right, and let $ F \in K ( H) $ be a left $ H $-space. Fibre spaces associated with $ P $ by objects from $ K ( P) $ are spaces of the type

$$ F ( P) = ( P \times F )/H, $$

where factorization is by the following right action of $ H $ on $ P \times F $:

$$ ( \xi , Y) h = ( \xi h, h ^ {-1} Y),\ \ ( \xi , Y) \in P \times F,\ \ h \in H. $$

The space $ F ( P) \in K ( P) $ is a fibre bundle over the base $ M $ with typical fibre $ F $. The element $ y \in F ( P) $ determined by a pair $ ( \xi , Y) \in P \times F $ is written as $ y = \xi Y $. If $ F, \Phi \in K ( H) $ and $ f: F \rightarrow \Phi $ is an $ H $-restriction mapping, then, by construction, $ F ( P) $ and $ \Phi ( P) f $ induce a fibre-wise surjective mapping $ f: F ( P) \rightarrow \Phi ( P) $, called a $ P $-restriction. The $ P $-restriction $ \widetilde{f} $ is defined by

$$ \widetilde{f} ( \xi Y) = \xi f ( Y),\ \ \xi \in P,\ Y \in F. $$

Thus, the class $ K ( P) $ of fibre bundles associated with $ P $ is a category with $ P $-restrictions $ \widetilde{f} $ as morphisms. The correspondence $ F \mapsto F ( P) $, $ f \mapsto \widetilde{f} $ is a bijective functor from the category $ K ( H) $ to the category $ K ( P) $. Hence it is sufficient to study the restriction operation in the category of $ H $-spaces.

If $ s: M \rightarrow F ( P) $ is a section of a fibre bundle $ F ( P) $ (a field of geometric objects of type $ F $), then the $ P $-restriction $ \widetilde{f} : F ( P) \rightarrow \Phi ( P) $ associates the section $ \widetilde{s} = \widetilde{f} \circ s $ of the restricted fibre bundle $ \Phi ( P) $ to $ s $. In other words, the field of geometric objects $ s ( x) $, $ x \in M $, restricts the field of geometric objects $ \widetilde{f} \circ s ( x) $. If $ s ( x) $ is the structure object of a $ G $-structure, then the study of the $ G $-structures and its invariants reduces largely to the search for restricting geometric objects. In the latter process, an important role is played by differential criteria for restrictions, formulated in terms of structure differential forms of fibre spaces forming the base of the method of restrictions and prolongations.

References

[1] G.F. Laptev, "Differential geometry of imbedded manifolds. Group-theoretical method of differential-geometric investigation" Trudy Moskov. Mat. Obshch. , 2 (1953) pp. 275–382 (In Russian)
[2] G.F. Laptev, , Proc. 3-rd All-Union Mat. Congress (Moscow, 1956) , 3 , Moscow (1958) pp. 409–418

Comments

References

[a1] G. Jensen, "Higher order contact of submanifolds of homogeneous spaces" , Lect. notes in math. , 610 , Springer (1977)
[a2] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1–2 , Interscience (1979)
How to Cite This Entry:
Method of extensions and restrictions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Method_of_extensions_and_restrictions&oldid=49299
This article was adapted from an original article by L.E. Evtushik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article