Namespaces
Variants
Actions

Meijer-G-functions

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Generalizations of the hypergeometric functions $ { {} _ {p} F _ {q} } $ of one variable (cf. also Hypergeometric function). They can be defined by an integral as

$$ G _ {pq } ^ {mn } \left ( x \left | \begin{array}{c} a _ {1} \dots a _ {p} \\ b _ {1} \dots b _ {q} \\ \end{array} \right . \right ) = $$

$$ = { \frac{1}{2 \pi i } } \int\limits _ { L } { { \frac{\prod _ {j = 1 } ^ { m } \Gamma ( b _ {j} - s ) \prod _ {j = 1 } ^ { n } \Gamma ( 1 - a _ {j} + s ) }{\prod _ {j = m + 1 } ^ { q } \Gamma ( 1 - b _ {j} + s ) \prod _ {j = n + 1 } ^ { p } \Gamma ( a _ {j} - s ) } } x ^ {s} } {ds } , $$

where $ 0 \leq m \leq p $, $ 0 \leq n \leq q $ and the parameters $ a _ {r} $, $ b _ {r} $ are such that no pole of the functions $ \Gamma ( b _ {j} - s ) $ coincides with any pole of the functions $ \Gamma ( 1 - a _ {j} + s ) $. There are three possible choices for the contour $ L $:

a) $ L $ goes from $ - i \infty $ to $ + i \infty $ remaining to the right of the poles of $ \Gamma ( b _ {j} - s ) $ and to the left of the poles of $ \Gamma ( 1 - a _ {j} + s ) $;

b) $ L $ begins and ends at $ + \infty $, encircles counterclockwise all poles of $ \Gamma ( b _ {j} - s ) $ and does not encircle any pole of $ \Gamma ( 1 - a _ {j} + s ) $;

c) $ L $ begins and ends at $ - \infty $, encircles clockwise all poles of $ \Gamma ( 1 - a _ {j} + s ) $ and does not encircle any pole of $ \Gamma ( b _ {j} - s ) $.

The integral converges if $ p + q < 2 ( m + n ) $, $ | { { \mathop{\rm arg} } x } | < ( m + n - {1 / 2 } ) ( p + q ) \pi $ in case a); if $ q \geq 1 $ and either $ p < q $ or $ p = q $ and $ | x | < 1 $ in case b); and if $ p \geq 1 $ and either $ p > q $ or $ p = q $ and $ | x | > 1 $ in case c).

The integral defining the Meijer $ G $- functions can be calculated by means of the residue theorem and one obtains expressions for $ G _ {pq } ^ {mn } $ in terms of the hypergeometric functions $ { {} _ {p} F _ {q - 1 } } $ or $ { {} _ {q} F _ {p - 1 } } $. The function $ G _ {pq } ^ {mn } $ satisfies the linear differential equation

$$ {\mathcal L} y = 0, $$

where

$$ {\mathcal L} = $$

$$ = \left [ ( - 1 ) ^ {p - m - n } \prod _ {j = 1 } ^ { p } \left ( x { \frac{d}{dx } } - a _ {j} + 1 \right ) \prod _ {j = 1 } ^ { q } \left ( x { \frac{d}{dx } } - b _ {j} \right ) \right ] . $$

Many functions of hypergeometric type and their products can be expressed in terms of Meijer $ G $- functions, [a1]. For example,

$$ J _ {a - b } ( 2 \sqrt x ) = x ^ {- ( a + b ) /2 } G _ {02 } ^ {10 } ( x \mid a,b ) , $$

$$ J _ {b - a } ( \sqrt x ) Y _ {b - a } ( \sqrt x ) = - \sqrt x x ^ {- a } G _ {13 } ^ {20 } \left ( x \left | \begin{array}{c} a + {1 / 2 } \\ b, a, 2a - b \\ \end{array} \right . \right ) . $$

Meijer $ G $- functions appear in the theory of Lie group representations (cf. also Representation of a compact group) as transition coefficients for different bases of carrier spaces of representations [a2].

References

[a1] A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, "Higher transcendental functions" , 1 , McGraw-Hill (1953)
[a2] N.J. Vilenkin, A.U. Klimyk, "Representation of Lie groups and special functions" , 2 , Kluwer Acad. Publ. (1993) (In Russian)
How to Cite This Entry:
Meijer-G-functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meijer-G-functions&oldid=49297
This article was adapted from an original article by A.U. Klimyk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article