Namespaces
Variants
Actions

Mehler-Fock transform

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Mehler–Fok transform

The integral transform

$$ \tag{1 } F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ( x) f( \tau ) d \tau ,\ \ 1 \leq x < \infty , $$

where $ P _ \nu ( x) $ is the Legendre function of the first kind (cf. Legendre functions). If $ f \in L[ 0, \infty ) $, the function $ | f ^ { \prime } ( \tau ) | $ is locally integrable on $ [ 0, \infty ) $ and $ f( 0) = 0 $, then the following inversion formula is valid:

$$ \tag{2 } f( \tau ) = \tau \mathop{\rm tanh} \pi \tau \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ( x) F( x) dx. $$

The Parseval identity. Consider the Mehler–Fock transform and its inverse defined by the equalities

$$ G( \tau ) = \int\limits _ { 1 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \pi \tau } P _ {i \tau - 1/2 } ( x) g( x) dx, $$

$$ g( x) = \int\limits _ { 0 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \ \pi \tau } P _ {i \tau - 1/2 } ( x) G( \tau ) d \tau . $$

If $ g _ {i} ( x) $, $ i = 1, 2 $, are arbitrary real-valued functions satisfying the conditions

$$ g _ {i} ( x) x ^ {-1/2} \mathop{\rm ln} ( 1+ x) \in L( 1, \infty ),\ \ g _ {i} ( x) \in L _ {2} ( 1, \infty ), $$

then

$$ \int\limits _ { 0 } ^ \infty G _ {1} ( \tau ) G _ {2} ( \tau ) d \tau = \ \int\limits _ { 1 } ^ \infty g _ {1} ( x) g _ {2} ( x) dx. $$

The generalized Mehler–Fock transform and the corresponding inversion formula are:

$$ \tag{3 } F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ^ {(k)} ( x) f( \tau ) d \tau , $$

and

$$ \tag{4 } f( \tau ) = \frac{1} \pi \tau \sinh \pi \tau \Gamma \left ( \frac{1}{2} - k + i \tau \right ) \Gamma \left ( \frac{1}{2} - k - i \tau \right ) \times $$

$$ \times \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ^ {(k)} ( x) F( x) dx, $$

where $ P _ \nu ^ {(k)} ( x) $ are the associated Legendre functions of the first kind. For $ k= 0 $ formulas (3) and (4) reduce to (1) and (2); for $ k = 1/2 $, $ y = \cosh \alpha $, formulas (3) and (4) lead to the Fourier cosine transform, and for $ k = - 1/2 $, $ y = \cosh \alpha $ to the Fourier sine transform. The transforms (1) and (2) were introduced by F.G. Mehler [1]. The basic theorems were proved by V.A. Fock [V.A. Fok].

References

[1] F.G. Mehler, "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" Math. Ann. , 18 (1881) pp. 161–194
[2] V.A. Fok, "On the representation of an arbitrary function by an integral involving Legendre functions with complex index" Dokl. Akad. Nauk SSSR , 39 (1943) pp. 253–256 (In Russian)
[3] V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82

Comments

References

[a1] I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972)
How to Cite This Entry:
Mehler-Fock transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mehler-Fock_transform&oldid=52257
This article was adapted from an original article by Yu.A. BrychkovA.P. Prudnikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article