Namespaces
Variants
Actions

Martin boundary in potential theory

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The ideal boundary of a Green space $ \Omega $( see also Boundary (in the theory of uniform algebras)), which allows one to construct the characteristic representation of positive harmonic functions in $ \Omega $. Let $ \Omega $ be a locally compact, non-compact, topological space, and let $ \Phi $ be a family of continuous functions $ f : \Omega \rightarrow [ - \infty , + \infty ] $. The Constantinescu–Cornea theorem [2] asserts that, up to a homeomorphism, there is a unique compact space $ \widehat \Omega $ with the following properties: 1) $ \Omega $ is an everywhere-dense subspace of $ \widehat \Omega $; 2) each $ f \in \Phi $ extends continuously to a function $ \widehat{f} $ on $ \widehat \Omega $, separating points on the ideal boundary $ \Delta = \widehat \Omega \setminus \Omega $ of $ \Omega $ relative to $ \Phi $; and 3) $ \Omega $ is an open set in $ \widehat \Omega $.

Now, let $ \Omega $ be a bounded domain in a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, or, more generally, a Green space; let $ G = G ( x , y ) $ be the Green function on $ \Omega $ with pole $ y \in \Omega $ and let $ y _ {0} \in \Omega $ be fixed. The Martin space or Martin compactification $ \widehat \Omega $ of $ \Omega $ is obtained via the Constantinescu–Cornea theorem by taking for $ \Phi $ the family

$$ \Phi = \ \left \{ { x \in \Omega \rightarrow K ( x , y ) = \frac{G ( x , y ) }{G ( x , y _ {0} ) } } : { y \in \Omega } \right \} , $$

where, by definition, $ K ( x _ {0} , y _ {0} ) = 1 $. The Martin boundary is the corresponding ideal boundary $ \Delta = \widehat \Omega \setminus \Omega $. The Martin topology $ T $ is the topology on the Martin space $ \widehat \Omega $. Two Martin spaces $ \widehat \Omega {} ^ \prime $, $ \widehat \Omega {} ^ {\prime\prime} $ corresponding to different points $ y _ {0} ^ \prime , y _ {0} ^ {\prime\prime} \in \Omega $ are homeomorphic. The function $ \widehat{K} ( \xi , y) : \Delta \times \Omega \rightarrow [ 0 , + \infty ] $, the extension of $ K ( x , y ) $, is harmonic in $ y $ and jointly continuous in the variables $ ( \xi , y) $; $ \widehat \Omega $ is a metrizable space. Martin's fundamental theorem [1] asserts: The class of all positive harmonic functions $ u ( y) \geq 0 $ on $ \Omega $ is characterized by the Martin representation:

$$ \tag{* } u ( y) = \int\limits K ( \xi , y ) d \mu ( \xi ) , $$

where $ \mu $ is a positive Radon measure on $ \Delta $. The measure $ \mu $ in (*) is not uniquely determined by the function $ u $. A harmonic function $ v \geq 0 $ is called minimal in $ \Omega $ if each harmonic function $ w $ such that $ 0 \leq w \leq v $ in $ \Omega $ is proportional to $ v $. Minimal harmonic functions $ v \neq 0 $ are proportional to $ \widehat{K} ( \xi , y) $, the corresponding points $ \xi \in \Delta $ are called minimal, and the set of minimal points $ \Delta _ {1} \subset \Delta $ is called the minimal Martin boundary. If one poses the additional condition that $ \mu $ in (*) be concentrated on $ \Delta _ {1} $, one obtains the canonical Martin representation:

$$ u ( y) = \int\limits \widehat{K} ( \xi , y ) d \mu _ {1} ( \xi ) , $$

in which the measure $ \mu _ {1} \geq 0 $ is uniquely determined by $ u $.

Examples. a) If $ \Omega = \{ {x \in \mathbf R ^ {n} } : {| x | < R } \} $ is a ball of radius $ R $ in $ \mathbf R ^ {n} $, $ n \geq 2 $, then

$$ \widehat{K} ( \xi , y ) = \ \frac{R ^ {n-2} ( R ^ {2} - | y | ^ {2} ) }{| \xi - y | ^ {n} } $$

is the Poisson kernel, $ \widehat \Omega $ is the Euclidean closure $ \widehat \Omega = \overline \Omega \; $, the Martin boundary $ \Delta $ is the sphere $ \{ {\xi \in \mathbf R ^ {n} } : {| \xi | = R } \} $, all points of which are minimal. The representation (*) in this case reduces to the Poisson–Herglotz formula (see Integral representation of an analytic function; Poisson integral).

b) The Martin boundary $ \Delta $ coincides with the Euclidean boundary $ \Gamma = \overline \Omega \; \setminus \Omega $ whenever $ \Gamma $ is a sufficiently smooth hypersurface in $ \mathbf R ^ {n} $, $ n \geq 2 $.

c) If $ \Omega $ is a simply-connected domain in the plane, then the Martin boundary $ \Delta $ coincides with the set of limit elements, or Carathéodory prime ends. Thus, an element of the Martin boundary $ \xi \in \Delta $ can be considered as a generalization of the notion of a prime end to dimension $ n \geq 2 $.

References

[1] R.S. Martin, "Minimal positive harmonic functions" Trans. Amer. Math. Soc. , 49 (1941) pp. 137–172
[2] C. Constantinescu, A. Cornea, "Ideale Ränder Riemannscher Flächen" , Springer pp. 1963
[3] M. Brelot, "On topologies and boundaries in potential theory" , Springer (1971)

Comments

See also [a1], Chapt. 12, for a concise treatment. For Martin boundaries for the heat equation or in probabilistic potential theory, see [a3].

References

[a1] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
[a2] M. Brelot, "Axiomatique des fonctions harmoniques" , Univ. Montréal (1966)
[a3] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390
How to Cite This Entry:
Martin boundary in potential theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Martin_boundary_in_potential_theory&oldid=50996
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article