Namespaces
Variants
Actions

Difference between revisions of "Martin boundary in potential theory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The ideal boundary of a [[Green space|Green space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625501.png" /> (see also [[Boundary (in the theory of uniform algebras)|Boundary (in the theory of uniform algebras)]]), which allows one to construct the characteristic representation of positive harmonic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625502.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625503.png" /> be a locally compact, non-compact, topological space, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625504.png" /> be a family of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625505.png" />. The Constantinescu–Cornea theorem [[#References|[2]]] asserts that, up to a homeomorphism, there is a unique compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625506.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625507.png" /> is an everywhere-dense subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625508.png" />; 2) each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m0625509.png" /> extends continuously to a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255010.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255011.png" />, separating points on the ideal boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255013.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255014.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255015.png" /> is an open set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255016.png" />.
+
<!--
 +
m0625501.png
 +
$#A+1 = 79 n = 0
 +
$#C+1 = 79 : ~/encyclopedia/old_files/data/M062/M.0602550 Martin boundary in potential theory
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Now, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255017.png" /> be a bounded domain in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255019.png" />, or, more generally, a Green space; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255020.png" /> be the [[Green function|Green function]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255021.png" /> with pole <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255022.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255023.png" /> be fixed. The Martin space or Martin compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255025.png" /> is obtained via the Constantinescu–Cornea theorem by taking for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255026.png" /> the family
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255027.png" /></td> </tr></table>
+
The ideal boundary of a [[Green space|Green space]]  $  \Omega $(
 +
see also [[Boundary (in the theory of uniform algebras)|Boundary (in the theory of uniform algebras)]]), which allows one to construct the characteristic representation of positive harmonic functions in  $  \Omega $.
 +
Let  $  \Omega $
 +
be a locally compact, non-compact, topological space, and let  $  \Phi $
 +
be a family of continuous functions  $  f : \Omega \rightarrow [ - \infty , + \infty ] $.
 +
The Constantinescu–Cornea theorem [[#References|[2]]] asserts that, up to a homeomorphism, there is a unique compact space  $  \widehat \Omega  $
 +
with the following properties: 1)  $  \Omega $
 +
is an everywhere-dense subspace of  $  \widehat \Omega  $;  
 +
2) each  $  f \in \Phi $
 +
extends continuously to a function  $  \widehat{f}  $
 +
on  $  \widehat \Omega  $,
 +
separating points on the ideal boundary  $  \Delta = \widehat \Omega  \setminus  \Omega $
 +
of  $  \Omega $
 +
relative to  $  \Phi $;
 +
and 3)  $  \Omega $
 +
is an open set in  $  \widehat \Omega  $.
  
where, by definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255028.png" />. The Martin boundary is the corresponding ideal boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255029.png" />. The Martin topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255030.png" /> is the topology on the Martin space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255031.png" />. Two Martin spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255033.png" /> corresponding to different points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255034.png" /> are homeomorphic. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255035.png" />, the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255036.png" />, is harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255037.png" /> and jointly continuous in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255038.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255039.png" /> is a metrizable space. Martin's fundamental theorem [[#References|[1]]] asserts: The class of all positive harmonic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255040.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255041.png" /> is characterized by the Martin representation:
+
Now, let  $  \Omega $
 +
be a bounded domain in a Euclidean space  $  \mathbf R  ^ {n} $,
 +
$  n \geq  2 $,  
 +
or, more generally, a Green space; let  $  G = G ( x , y ) $
 +
be the [[Green function|Green function]] on $  \Omega $
 +
with pole  $  y \in \Omega $
 +
and let  $  y _ {0} \in \Omega $
 +
be fixed. The Martin space or Martin compactification  $  \widehat \Omega  $
 +
of  $  \Omega $
 +
is obtained via the Constantinescu–Cornea theorem by taking for  $  \Phi $
 +
the family
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
\Phi  = \
 +
\left \{ {
 +
x \in \Omega \rightarrow K
 +
( x , y ) =
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255043.png" /> is a positive [[Radon measure|Radon measure]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255044.png" />. The measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255045.png" /> in (*) is not uniquely determined by the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255046.png" />. A harmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255047.png" /> is called minimal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255048.png" /> if each harmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255050.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255051.png" /> is proportional to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255052.png" />. Minimal harmonic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255053.png" /> are proportional to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255054.png" />, the corresponding points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255055.png" /> are called minimal, and the set of minimal points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255056.png" /> is called the minimal Martin boundary. If one poses the additional condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255057.png" /> in (*) be concentrated on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255058.png" />, one obtains the canonical Martin representation:
+
\frac{G ( x , y ) }{G ( x , y _ {0} ) }
 +
} : {
 +
y \in \Omega
 +
} \right \}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255059.png" /></td> </tr></table>
+
where, by definition,  $  K ( x _ {0} , y _ {0} ) = 1 $.
 +
The Martin boundary is the corresponding ideal boundary  $  \Delta = \widehat \Omega  \setminus  \Omega $.
 +
The Martin topology  $  T $
 +
is the topology on the Martin space  $  \widehat \Omega  $.
 +
Two Martin spaces  $  \widehat \Omega  {}  ^  \prime  $,
 +
$  \widehat \Omega  {}  ^ {\prime\prime} $
 +
corresponding to different points  $  y _ {0}  ^  \prime  , y _ {0}  ^ {\prime\prime} \in \Omega $
 +
are homeomorphic. The function  $  \widehat{K}  ( \xi , y) : \Delta \times \Omega \rightarrow [ 0 , + \infty ] $,
 +
the extension of  $  K ( x , y ) $,
 +
is harmonic in  $  y $
 +
and jointly continuous in the variables  $  ( \xi , y) $;  
 +
$  \widehat \Omega  $
 +
is a metrizable space. Martin's fundamental theorem [[#References|[1]]] asserts: The class of all positive harmonic functions  $  u ( y) \geq  0 $
 +
on  $  \Omega $
 +
is characterized by the Martin representation:
  
in which the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255060.png" /> is uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255061.png" />.
+
$$ \tag{* }
 +
u ( y)  = \int\limits K ( \xi , y )  d \mu ( \xi ) ,
 +
$$
  
Examples. a) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255062.png" /> is a ball of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255063.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255065.png" />, then
+
where  $  \mu $
 +
is a positive [[Radon measure|Radon measure]] on  $  \Delta $.  
 +
The measure  $  \mu $
 +
in (*) is not uniquely determined by the function  $  u $.
 +
A harmonic function  $  v \geq  0 $
 +
is called minimal in  $  \Omega $
 +
if each harmonic function  $  w $
 +
such that  $  0 \leq  w \leq  v $
 +
in  $  \Omega $
 +
is proportional to  $  v $.  
 +
Minimal harmonic functions  $  v \neq 0 $
 +
are proportional to  $  \widehat{K}  ( \xi , y) $,
 +
the corresponding points  $  \xi \in \Delta $
 +
are called minimal, and the set of minimal points  $  \Delta _ {1} \subset  \Delta $
 +
is called the minimal Martin boundary. If one poses the additional condition that  $  \mu $
 +
in (*) be concentrated on  $  \Delta _ {1} $,  
 +
one obtains the canonical Martin representation:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255066.png" /></td> </tr></table>
+
$$
 +
u ( y)  = \int\limits \widehat{K}  ( \xi , y )  d \mu _ {1} ( \xi ) ,
 +
$$
  
is the Poisson kernel, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255067.png" /> is the Euclidean closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255068.png" />, the Martin boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255069.png" /> is the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255070.png" />, all points of which are minimal. The representation (*) in this case reduces to the Poisson–Herglotz formula (see [[Integral representation of an analytic function|Integral representation of an analytic function]]; [[Poisson integral|Poisson integral]]).
+
in which the measure  $  \mu _ {1} \geq  0 $
 +
is uniquely determined by  $  u $.
  
b) The Martin boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255071.png" /> coincides with the Euclidean boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255072.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255073.png" /> is a sufficiently smooth hypersurface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255075.png" />.
+
Examples. a) If  $  \Omega = \{ {x \in \mathbf R  ^ {n} } : {| x | < R } \} $
 +
is a ball of radius  $  R $
 +
in $  \mathbf R  ^ {n} $,
 +
$  n \geq  2 $,  
 +
then
  
c) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255076.png" /> is a simply-connected domain in the plane, then the Martin boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255077.png" /> coincides with the set of [[Limit elements|limit elements]], or Carathéodory prime ends. Thus, an element of the Martin boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255078.png" /> can be considered as a generalization of the notion of a prime end to dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255079.png" />.
+
$$
 +
\widehat{K}  ( \xi , y ) = \
 +
 
 +
\frac{R  ^ {n-} 2 ( R  ^ {2} - | y |  ^ {2} ) }{| \xi - y |  ^ {n} }
 +
 
 +
$$
 +
 
 +
is the Poisson kernel,  $  \widehat \Omega  $
 +
is the Euclidean closure  $  \widehat \Omega  = \overline \Omega \; $,
 +
the Martin boundary  $  \Delta $
 +
is the sphere  $  \{ {\xi \in \mathbf R  ^ {n} } : {| \xi | = R } \} $,
 +
all points of which are minimal. The representation (*) in this case reduces to the Poisson–Herglotz formula (see [[Integral representation of an analytic function|Integral representation of an analytic function]]; [[Poisson integral|Poisson integral]]).
 +
 
 +
b) The Martin boundary  $  \Delta $
 +
coincides with the Euclidean boundary  $  \Gamma = \overline \Omega \; \setminus  \Omega $
 +
whenever  $  \Gamma $
 +
is a sufficiently smooth hypersurface in  $  \mathbf R  ^ {n} $,
 +
$  n \geq  2 $.
 +
 
 +
c) If  $  \Omega $
 +
is a simply-connected domain in the plane, then the Martin boundary $  \Delta $
 +
coincides with the set of [[Limit elements|limit elements]], or Carathéodory prime ends. Thus, an element of the Martin boundary $  \xi \in \Delta $
 +
can be considered as a generalization of the notion of a prime end to dimension $  n \geq  2 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.S. Martin,  "Minimal positive harmonic functions"  ''Trans. Amer. Math. Soc.'' , '''49'''  (1941)  pp. 137–172</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Ideale Ränder Riemannscher Flächen" , Springer  pp. 1963</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brelot,  "On topologies and boundaries in potential theory" , Springer  (1971)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.S. Martin,  "Minimal positive harmonic functions"  ''Trans. Amer. Math. Soc.'' , '''49'''  (1941)  pp. 137–172</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Ideale Ränder Riemannscher Flächen" , Springer  pp. 1963</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brelot,  "On topologies and boundaries in potential theory" , Springer  (1971)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 07:59, 6 June 2020


The ideal boundary of a Green space $ \Omega $( see also Boundary (in the theory of uniform algebras)), which allows one to construct the characteristic representation of positive harmonic functions in $ \Omega $. Let $ \Omega $ be a locally compact, non-compact, topological space, and let $ \Phi $ be a family of continuous functions $ f : \Omega \rightarrow [ - \infty , + \infty ] $. The Constantinescu–Cornea theorem [2] asserts that, up to a homeomorphism, there is a unique compact space $ \widehat \Omega $ with the following properties: 1) $ \Omega $ is an everywhere-dense subspace of $ \widehat \Omega $; 2) each $ f \in \Phi $ extends continuously to a function $ \widehat{f} $ on $ \widehat \Omega $, separating points on the ideal boundary $ \Delta = \widehat \Omega \setminus \Omega $ of $ \Omega $ relative to $ \Phi $; and 3) $ \Omega $ is an open set in $ \widehat \Omega $.

Now, let $ \Omega $ be a bounded domain in a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, or, more generally, a Green space; let $ G = G ( x , y ) $ be the Green function on $ \Omega $ with pole $ y \in \Omega $ and let $ y _ {0} \in \Omega $ be fixed. The Martin space or Martin compactification $ \widehat \Omega $ of $ \Omega $ is obtained via the Constantinescu–Cornea theorem by taking for $ \Phi $ the family

$$ \Phi = \ \left \{ { x \in \Omega \rightarrow K ( x , y ) = \frac{G ( x , y ) }{G ( x , y _ {0} ) } } : { y \in \Omega } \right \} , $$

where, by definition, $ K ( x _ {0} , y _ {0} ) = 1 $. The Martin boundary is the corresponding ideal boundary $ \Delta = \widehat \Omega \setminus \Omega $. The Martin topology $ T $ is the topology on the Martin space $ \widehat \Omega $. Two Martin spaces $ \widehat \Omega {} ^ \prime $, $ \widehat \Omega {} ^ {\prime\prime} $ corresponding to different points $ y _ {0} ^ \prime , y _ {0} ^ {\prime\prime} \in \Omega $ are homeomorphic. The function $ \widehat{K} ( \xi , y) : \Delta \times \Omega \rightarrow [ 0 , + \infty ] $, the extension of $ K ( x , y ) $, is harmonic in $ y $ and jointly continuous in the variables $ ( \xi , y) $; $ \widehat \Omega $ is a metrizable space. Martin's fundamental theorem [1] asserts: The class of all positive harmonic functions $ u ( y) \geq 0 $ on $ \Omega $ is characterized by the Martin representation:

$$ \tag{* } u ( y) = \int\limits K ( \xi , y ) d \mu ( \xi ) , $$

where $ \mu $ is a positive Radon measure on $ \Delta $. The measure $ \mu $ in (*) is not uniquely determined by the function $ u $. A harmonic function $ v \geq 0 $ is called minimal in $ \Omega $ if each harmonic function $ w $ such that $ 0 \leq w \leq v $ in $ \Omega $ is proportional to $ v $. Minimal harmonic functions $ v \neq 0 $ are proportional to $ \widehat{K} ( \xi , y) $, the corresponding points $ \xi \in \Delta $ are called minimal, and the set of minimal points $ \Delta _ {1} \subset \Delta $ is called the minimal Martin boundary. If one poses the additional condition that $ \mu $ in (*) be concentrated on $ \Delta _ {1} $, one obtains the canonical Martin representation:

$$ u ( y) = \int\limits \widehat{K} ( \xi , y ) d \mu _ {1} ( \xi ) , $$

in which the measure $ \mu _ {1} \geq 0 $ is uniquely determined by $ u $.

Examples. a) If $ \Omega = \{ {x \in \mathbf R ^ {n} } : {| x | < R } \} $ is a ball of radius $ R $ in $ \mathbf R ^ {n} $, $ n \geq 2 $, then

$$ \widehat{K} ( \xi , y ) = \ \frac{R ^ {n-} 2 ( R ^ {2} - | y | ^ {2} ) }{| \xi - y | ^ {n} } $$

is the Poisson kernel, $ \widehat \Omega $ is the Euclidean closure $ \widehat \Omega = \overline \Omega \; $, the Martin boundary $ \Delta $ is the sphere $ \{ {\xi \in \mathbf R ^ {n} } : {| \xi | = R } \} $, all points of which are minimal. The representation (*) in this case reduces to the Poisson–Herglotz formula (see Integral representation of an analytic function; Poisson integral).

b) The Martin boundary $ \Delta $ coincides with the Euclidean boundary $ \Gamma = \overline \Omega \; \setminus \Omega $ whenever $ \Gamma $ is a sufficiently smooth hypersurface in $ \mathbf R ^ {n} $, $ n \geq 2 $.

c) If $ \Omega $ is a simply-connected domain in the plane, then the Martin boundary $ \Delta $ coincides with the set of limit elements, or Carathéodory prime ends. Thus, an element of the Martin boundary $ \xi \in \Delta $ can be considered as a generalization of the notion of a prime end to dimension $ n \geq 2 $.

References

[1] R.S. Martin, "Minimal positive harmonic functions" Trans. Amer. Math. Soc. , 49 (1941) pp. 137–172
[2] C. Constantinescu, A. Cornea, "Ideale Ränder Riemannscher Flächen" , Springer pp. 1963
[3] M. Brelot, "On topologies and boundaries in potential theory" , Springer (1971)

Comments

See also [a1], Chapt. 12, for a concise treatment. For Martin boundaries for the heat equation or in probabilistic potential theory, see [a3].

References

[a1] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
[a2] M. Brelot, "Axiomatique des fonctions harmoniques" , Univ. Montréal (1966)
[a3] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390
How to Cite This Entry:
Martin boundary in potential theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Martin_boundary_in_potential_theory&oldid=14144
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article