Namespaces
Variants
Actions

Markov chain, class of zero states of a

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 60J10 Secondary: 60J27 [MSN][ZBL]

A set $ K $ of states of a homogeneous Markov chain $ \xi ( t) $ with state space $ S $ such that

$$ {\mathsf P} \{ {\exists t > 0 } : {\xi ( t) = j \mid \xi ( 0) = i } \} = 1 $$

for any $ i , j \in K $,

$$ p _ {il} ( t) = \ {\mathsf P} \{ \xi ( t) = l \mid \xi ( 0) = i \} = 0 $$

for any $ i \in K $, $ l \in S \setminus K $, $ t > 0 $, and

$$ \tag{* } {\mathsf E} \tau _ {ii} = \infty $$

for any $ i \in K $, where $ \tau _ {ii} $ is the return time to the state $ i $:

$$ \tau _ {ii} = \min \ \{ {t > 0 } : {\xi ( t) = i \mid \xi ( 0) = i } \} $$

for a discrete-time Markov chain, and

$$ \tau _ {ii} = \inf \ \{ {t > 0 } : {\xi ( t) = i \mid \xi ( 0) = i , \xi ( 0 + ) \neq i } \} $$

for a continuous-time Markov chain.

As in the case of a class of positive states (in the definition of a positive class (*) is replaced by $ {\mathsf E} \tau _ {ii} < \infty $), states belonging to the same zero class have a number of common properties. For example, for any states $ i , j $ of a zero class $ K $,

$$ \lim\limits _ {t \rightarrow \infty } p _ {ij} ( t) = 0 . $$

An example of a Markov chain whose states form a single zero class is the symmetric random walk on the integers:

$$ \xi ( 0) = 0 ,\ \ \xi ( t) = \xi ( t - 1 ) + \eta ( t) ,\ \ t = 1 , 2 \dots $$

where $ \eta ( 1) , \eta ( 2) \dots $ are independent random variables,

$$ {\mathsf P} \{ \eta ( i) = 1 \} \ = {\mathsf P} \{ \eta ( i) = - 1 \} \ = 1/2 ,\ i = 1 , 2 ,\dots . $$

References

[C] K.L. Chung, "Markov chains with stationary transition probabilities" , Springer (1967) MR0217872 Zbl 0146.38401

Comments

Cf. also Markov chain, class of positive states of a.

References

[F] W. Feller, "An introduction to probability theory and its applications", 1–2, Wiley (1966)
[Fr] D. Freedman, "Markov chains", Holden-Day (1975) MR0686269 MR0681291 MR0556418 MR0428472 MR0292176 MR0237001 MR0211464 MR0164375 MR0158435 MR0152015 Zbl 0501.60071 Zbl 0501.60069 Zbl 0426.60064 Zbl 0325.60059 Zbl 0322.60057 Zbl 0212.49801 Zbl 0129.30605
[I] M. Iosifescu, "Finite Markov processes and their applications", Wiley (1980) MR0587116 Zbl 0436.60001
[KS] J.G. Kemeny, J.L. Snell, "Finite Markov chains", v. Nostrand (1960) MR1531032 MR0115196 Zbl 0089.13704
[KSK] J.G. Kemeny, J.L. Snell, A.W. Knapp, "Denumerable Markov chains", Springer (1976) MR0407981 Zbl 0348.60090
[Re] D. Revuz, "Markov chains", North-Holland (1975) MR0415773 Zbl 0332.60045
[Ro] V.I. Romanovsky, "Discrete Markov chains", Wolters-Noordhoff (1970) (Translated from Russian) MR0266312 Zbl 0201.20002
[S] E. Seneta, "Non-negative matrices and Markov chains", Springer (1981) MR2209438 Zbl 0471.60001
How to Cite This Entry:
Markov chain, class of zero states of a. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_chain,_class_of_zero_states_of_a&oldid=47766
This article was adapted from an original article by A.M. Zubkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article