Namespaces
Variants
Actions

Difference between revisions of "Mal'tsev algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m0621701.png
 +
$#A+1 = 73 n = 0
 +
$#C+1 = 73 : ~/encyclopedia/old_files/data/M062/M.0602170 Mal\AAptsev algebra,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Moufang–Lie algebra''
 
''Moufang–Lie algebra''
  
 
An algebra over a field satisfying the identities
 
An algebra over a field satisfying the identities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621701.png" /></td> </tr></table>
+
$$
 +
x  ^ {2}  = 0 ,\ \
 +
J ( x , y , x z )  = \
 +
J ( x , y , z ) x ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621702.png" /> is the Jacobian of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621703.png" />. Mal'tsev algebras are a natural generalization of Lie algebras. Any Mal'tsev algebra is a [[Binary Lie algebra|binary Lie algebra]].
+
where $  J ( x , y , z ) = ( x y ) z + ( z x ) y + ( y z ) x $
 +
is the Jacobian of $  x , y , z $.  
 +
Mal'tsev algebras are a natural generalization of Lie algebras. Any Mal'tsev algebra is a [[Binary Lie algebra|binary Lie algebra]].
  
 
Mal'tsev algebras were introduced by A.I. Mal'tsev [[#References|[1]]], who called them Moufang–Lie algebras because of the connection with analytic Moufang loops (cf. [[Moufang loop|Moufang loop]]). The tangent algebra of a locally analytic Moufang loop is a Mal'tsev algebra. The converse is also true: Any finite-dimensional Mal'tsev algebra over a complete normed field of characteristic zero is the tangent algebra of some locally analytic Moufang loop.
 
Mal'tsev algebras were introduced by A.I. Mal'tsev [[#References|[1]]], who called them Moufang–Lie algebras because of the connection with analytic Moufang loops (cf. [[Moufang loop|Moufang loop]]). The tangent algebra of a locally analytic Moufang loop is a Mal'tsev algebra. The converse is also true: Any finite-dimensional Mal'tsev algebra over a complete normed field of characteristic zero is the tangent algebra of some locally analytic Moufang loop.
Line 11: Line 29:
 
There is a close connection between Mal'tsev algebras and alternative algebras (see [[Alternative rings and algebras|Alternative rings and algebras]]). The commutator algebra of an arbitrary alternative algebra, that is, the algebra obtained by replacing the original multiplication by the commutator operation
 
There is a close connection between Mal'tsev algebras and alternative algebras (see [[Alternative rings and algebras|Alternative rings and algebras]]). The commutator algebra of an arbitrary alternative algebra, that is, the algebra obtained by replacing the original multiplication by the commutator operation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621704.png" /></td> </tr></table>
+
$$
 +
[ x , y ]  = x y - y x ,
 +
$$
  
 
is a Mal'tsev algebra.
 
is a Mal'tsev algebra.
  
Every simple Mal'tsev algebra (cf. [[Simple algebra|Simple algebra]]) of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621705.png" /> is either a Lie algebra or is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621706.png" />-dimensional algebra over its centroid. Every primary Mal'tsev algebra (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621707.png" />, cf. also [[Primary ring|Primary ring]]) is either a Lie algebra or can be imbedded as a subring in a suitable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621708.png" />-dimensional simple algebra over some field. An arbitrary semi-primary Mal'tsev algebra (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m0621709.png" />) can be isomorphically imbedded as a subalgebra in the commutator algebra of an alternative algebra. The question of imbedding an arbitrary Mal'tsev algebra in the commutator algebra of an alternative algebra is open (1989).
+
Every simple Mal'tsev algebra (cf. [[Simple algebra|Simple algebra]]) of characteristic $  p \neq 2 $
 +
is either a Lie algebra or is a $  7 $-
 +
dimensional algebra over its centroid. Every primary Mal'tsev algebra (for $  p \neq 2 $,  
 +
cf. also [[Primary ring|Primary ring]]) is either a Lie algebra or can be imbedded as a subring in a suitable $  7 $-
 +
dimensional simple algebra over some field. An arbitrary semi-primary Mal'tsev algebra (for $  p \neq 2 $)  
 +
can be isomorphically imbedded as a subalgebra in the commutator algebra of an alternative algebra. The question of imbedding an arbitrary Mal'tsev algebra in the commutator algebra of an alternative algebra is open (1989).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217010.png" /> be the Lie centre of a Mal'tsev algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217011.png" />:
+
Let $  Z ( A) $
 +
be the Lie centre of a Mal'tsev algebra $  A $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217012.png" /></td> </tr></table>
+
$$
 +
Z ( A)  = \
 +
\{ {n \in A } : {J ( n , a , b ) = 0 \
 +
\textrm{ for  all  }  a , b \in A } \}
 +
.
 +
$$
  
For any ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217013.png" /> of a semi-primary Mal'tsev algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217014.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217015.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217016.png" />.
+
For any ideal $  I $
 +
of a semi-primary Mal'tsev algebra $  A $(
 +
for $  p \neq 2 $),  
 +
$  Z ( I) = Z ( A) \cap I $.
  
The properties of an algebraic Mal'tsev algebra (cf. [[Algebraic algebra|Algebraic algebra]]) are similar to the properties of an algebraic Lie algebra (cf. [[Lie algebra, algebraic|Lie algebra, algebraic]]). In any algebraic Mal'tsev algebra (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217017.png" />) there is a locally finite radical, that is, a maximal locally finite ideal such that the quotient algebra with respect to it does not contain locally finite ideals. A Mal'tsev algebra of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217018.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217019.png" /> satisfying the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217020.png" />-th Engel condition (see [[Engel algebra|Engel algebra]]) is locally nilpotent (cf. [[Locally nilpotent algebra|Locally nilpotent algebra]]). The difference between Mal'tsev algebras and Lie algebras manifests itself in the passage from local nilpotency to global. There is, for example, a Mal'tsev algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217021.png" /> satisfying the third Engel condition and which is solvable of index 2, but is not nilpotent (cf. [[Nilpotent algebra|Nilpotent algebra]]).
+
The properties of an algebraic Mal'tsev algebra (cf. [[Algebraic algebra|Algebraic algebra]]) are similar to the properties of an algebraic Lie algebra (cf. [[Lie algebra, algebraic|Lie algebra, algebraic]]). In any algebraic Mal'tsev algebra (for $  p \neq 2 $)  
 +
there is a locally finite radical, that is, a maximal locally finite ideal such that the quotient algebra with respect to it does not contain locally finite ideals. A Mal'tsev algebra of characteristic $  p \geq  n $
 +
or $  p = 0 $
 +
satisfying the $  n $-
 +
th Engel condition (see [[Engel algebra|Engel algebra]]) is locally nilpotent (cf. [[Locally nilpotent algebra|Locally nilpotent algebra]]). The difference between Mal'tsev algebras and Lie algebras manifests itself in the passage from local nilpotency to global. There is, for example, a Mal'tsev algebra $  ( p = 0 ) $
 +
satisfying the third Engel condition and which is solvable of index 2, but is not nilpotent (cf. [[Nilpotent algebra|Nilpotent algebra]]).
  
 
For a Mal'tsev algebra there is an analogue of Engel's theorem, which played a major role in the structure theory of Lie algebras: A Mal'tsev algebra satisfying the Engel condition and the maximum condition for subalgebras is nilpotent. This result also holds in the more general case of binary Lie algebras.
 
For a Mal'tsev algebra there is an analogue of Engel's theorem, which played a major role in the structure theory of Lie algebras: A Mal'tsev algebra satisfying the Engel condition and the maximum condition for subalgebras is nilpotent. This result also holds in the more general case of binary Lie algebras.
  
In every free Mal'tsev algebra (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217022.png" />) there is a non-zero Lie centre. A free Mal'tsev algebra (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217023.png" />) with three or more generators is not a primary algebra. A free Mal'tsev algebra (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217024.png" />) with nine or more generators contains trivial ideals.
+
In every free Mal'tsev algebra (for $  p \neq 2 $)  
 +
there is a non-zero Lie centre. A free Mal'tsev algebra (for $  p \neq 2 $)  
 +
with three or more generators is not a primary algebra. A free Mal'tsev algebra (for $  p \neq 2 $)  
 +
with nine or more generators contains trivial ideals.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217025.png" /> is the variety of Mal'tsev algebras generated by the free Mal'tsev algebra on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217026.png" /> generators and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217027.png" />, then the chain of varieties
+
If $  R _ {n} $
 +
is the variety of Mal'tsev algebras generated by the free Mal'tsev algebra on $  n $
 +
generators and $  p = 0 $,  
 +
then the chain of varieties
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217028.png" /></td> </tr></table>
+
$$
 +
R _ {1}  \subseteq  R _ {2}  \subseteq \dots
 +
$$
  
 
does not stabilize at any finite stage.
 
does not stabilize at any finite stage.
  
The theory of finite-dimensional Mal'tsev algebras and their representations is well-developed. The fundamental results are similar to the results in the theory of Lie algebras. There are analogues of Lie's classical theorems: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217029.png" /> is a split representation of a solvable Mal'tsev algebra of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217030.png" />, then all matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217031.png" /> can be simultaneously reduced to triangular form; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217032.png" /> is a split representation of a nilpotent Mal'tsev algebra on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217033.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217034.png" /> decomposes into a direct sum of weight subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217035.png" />, and the matrices of the bounded operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217036.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217037.png" /> can be simultaneously reduced to triangular form with the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217038.png" /> on the main diagonal (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]]).
+
The theory of finite-dimensional Mal'tsev algebras and their representations is well-developed. The fundamental results are similar to the results in the theory of Lie algebras. There are analogues of Lie's classical theorems: if $  \rho $
 +
is a split representation of a solvable Mal'tsev algebra of characteristic 0 $,  
 +
then all matrices $  \rho ( x) $
 +
can be simultaneously reduced to triangular form; if $  \rho $
 +
is a split representation of a nilpotent Mal'tsev algebra on a space $  V $,  
 +
then $  V $
 +
decomposes into a direct sum of weight subspaces $  V _  \alpha  $,  
 +
and the matrices of the bounded operators $  \rho ( x) $
 +
in $  V _  \alpha  $
 +
can be simultaneously reduced to triangular form with the numbers $  \alpha ( x) $
 +
on the main diagonal (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]]).
  
The following results are similar to Cartan's solvability criterion and semi-simplicity of Lie algebras: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217039.png" /> is a [[Faithful representation|faithful representation]] of a Mal'tsev algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217040.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217041.png" />) and if the bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217042.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217043.png" /> is trivial, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217044.png" /> is solvable; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217045.png" /> is a representation of a semi-simple Mal'tsev algebra, then the trace form associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217046.png" /> is non-degenerate. If the [[Killing form|Killing form]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217047.png" /> is non-degenerate, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217048.png" /> is semi-simple.
+
The following results are similar to Cartan's solvability criterion and semi-simplicity of Lie algebras: if $  \rho $
 +
is a [[Faithful representation|faithful representation]] of a Mal'tsev algebra $  A $(
 +
$  p = 0 $)  
 +
and if the bilinear form on $  A $
 +
associated with $  \rho $
 +
is trivial, then $  A $
 +
is solvable; if $  \rho $
 +
is a representation of a semi-simple Mal'tsev algebra, then the trace form associated with $  \rho $
 +
is non-degenerate. If the [[Killing form|Killing form]] of $  A $
 +
is non-degenerate, then $  A $
 +
is semi-simple.
  
Any representation of a semi-simple Mal'tsev algebra with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217049.png" /> is completely reducible (cf. [[Reducible representation|Reducible representation]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217050.png" /> is the radical (maximal solvable ideal) of a Mal'tsev algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217052.png" /> the nil radical (maximal nilpotent ideal), then for any derivation (cf. [[Derivation in a ring|Derivation in a ring]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217053.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217055.png" />.
+
Any representation of a semi-simple Mal'tsev algebra with $  p = 0 $
 +
is completely reducible (cf. [[Reducible representation|Reducible representation]]). If $  S $
 +
is the radical (maximal solvable ideal) of a Mal'tsev algebra $  A $,  
 +
$  N $
 +
the nil radical (maximal nilpotent ideal), then for any derivation (cf. [[Derivation in a ring|Derivation in a ring]]) $  D $
 +
on $  A $,  
 +
$  S D \subseteq N $.
  
An arbitrary finite-dimensional Mal'tsev algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217056.png" /> of characteristic zero is the direct sum (as linear spaces) of its radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217057.png" /> and a semi-simple subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217058.png" /> isomorphic to the quotient algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217059.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217060.png" />. Two semi-simple factors are conjugate by inner automorphisms (an analogue of the Levi–Mal'tsev–Harish-Chandra theorem for Lie algebras).
+
An arbitrary finite-dimensional Mal'tsev algebra $  A $
 +
of characteristic zero is the direct sum (as linear spaces) of its radical $  S $
 +
and a semi-simple subalgebra $  B $
 +
isomorphic to the quotient algebra of $  A $
 +
by $  S $.  
 +
Two semi-simple factors are conjugate by inner automorphisms (an analogue of the Levi–Mal'tsev–Harish-Chandra theorem for Lie algebras).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Analytic loops"  ''Mat. Sb.'' , '''36''' :  3  (1955)  pp. 569–576  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Sagle,  "Malcev algebras"  ''Trans. Amer. Math. Soc.'' , '''101''' :  3  (1961)  pp. 426–458</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.N. Kuz'min,  "Algebraic sets in Mal'tsev algebras"  ''Algebra and Logic'' , '''7''' :  2  (1968)  pp. 95–97  ''Algebra i Logika'' , '''7''' :  2  (1968)  pp. 42–47</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.N. Kuz'min,  "Mal'tsev algebras and their representations"  ''Algebra and Logic'' , '''7''' :  4  (1968)  pp. 233–244  ''Algebra i Logika'' , '''7''' :  4  (1968)  pp. 48–69</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.N. Kuz'min,  "On the relation between Mal'tsev algebras and analytic Moufang loops"  ''Algebra and Logic'' , '''10''' :  1  (1971)  pp. 1–14  ''Algebra i Logika'' , '''10''' :  1  (1971)  pp. 3–22</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E.N. Kuz'min,  "Levi's theorem for Mal'tsev algebras"  ''Algebra and Logic'' , '''16''' :  4  (1977)  pp. 286–291  ''Algebra i Logika'' , '''16''' :  4  (1977)  pp. 424–431</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  V.T. Filippov,  "On Engelian Mal'tsev algebras"  ''Algebra and Logic'' , '''15''' :  1  (1976)  pp. 57–71  ''Algebra i Logika'' , '''15''' :  1  (1976)  pp. 89–109</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.T. Filippov,  "Mal'tsev algebras"  ''Algebra and Logic'' , '''16''' :  1  (1977)  pp. 70–74  ''Algebra i Logika'' , '''16''' :  1  (1977)  pp. 101–108</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  A.N. Grishkov,  "Analogues of Levi's theorem for Mal'tsev algebras"  ''Algebra and Logic'' , '''16''' :  4  (1977)  pp. 260–265  ''Algebra i Logika'' , '''16''' :  4  (1977)  pp. 389–396</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  I.P. Shestakov,  "A problem of Shirshov"  ''Algebra and Logic'' , '''16''' :  2  (1977)  pp. 153–166  ''Algebra i Logika'' , '''16''' :  2  (1977)  pp. 227–246</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Analytic loops"  ''Mat. Sb.'' , '''36''' :  3  (1955)  pp. 569–576  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Sagle,  "Malcev algebras"  ''Trans. Amer. Math. Soc.'' , '''101''' :  3  (1961)  pp. 426–458</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.N. Kuz'min,  "Algebraic sets in Mal'tsev algebras"  ''Algebra and Logic'' , '''7''' :  2  (1968)  pp. 95–97  ''Algebra i Logika'' , '''7''' :  2  (1968)  pp. 42–47</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.N. Kuz'min,  "Mal'tsev algebras and their representations"  ''Algebra and Logic'' , '''7''' :  4  (1968)  pp. 233–244  ''Algebra i Logika'' , '''7''' :  4  (1968)  pp. 48–69</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.N. Kuz'min,  "On the relation between Mal'tsev algebras and analytic Moufang loops"  ''Algebra and Logic'' , '''10''' :  1  (1971)  pp. 1–14  ''Algebra i Logika'' , '''10''' :  1  (1971)  pp. 3–22</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E.N. Kuz'min,  "Levi's theorem for Mal'tsev algebras"  ''Algebra and Logic'' , '''16''' :  4  (1977)  pp. 286–291  ''Algebra i Logika'' , '''16''' :  4  (1977)  pp. 424–431</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  V.T. Filippov,  "On Engelian Mal'tsev algebras"  ''Algebra and Logic'' , '''15''' :  1  (1976)  pp. 57–71  ''Algebra i Logika'' , '''15''' :  1  (1976)  pp. 89–109</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.T. Filippov,  "Mal'tsev algebras"  ''Algebra and Logic'' , '''16''' :  1  (1977)  pp. 70–74  ''Algebra i Logika'' , '''16''' :  1  (1977)  pp. 101–108</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  A.N. Grishkov,  "Analogues of Levi's theorem for Mal'tsev algebras"  ''Algebra and Logic'' , '''16''' :  4  (1977)  pp. 260–265  ''Algebra i Logika'' , '''16''' :  4  (1977)  pp. 389–396</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  I.P. Shestakov,  "A problem of Shirshov"  ''Algebra and Logic'' , '''16''' :  2  (1977)  pp. 153–166  ''Algebra i Logika'' , '''16''' :  2  (1977)  pp. 227–246</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For an arbitrary algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217061.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217062.png" />, the centroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217063.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217064.png" /> is the set of elements of the module endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217066.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217067.png" /> which commute for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217068.png" /> with the left and right multiplications <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217069.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217070.png" /> is simple over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217072.png" /> is an extension field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217073.png" />, .
+
For an arbitrary algebra $  A $
 +
over a field $  F $,  
 +
the centroid $  E $
 +
of $  A $
 +
is the set of elements of the module endomorphisms $  \mathop{\rm Hom} _ {F} ( A, A) $
 +
of $  A $
 +
over $  F $
 +
which commute for all $  x, y \in A $
 +
with the left and right multiplications $  L _ {x} , R _ {y} \in  \mathop{\rm Hom} _ {F} ( A, A) $.  
 +
If $  A $
 +
is simple over $  F $,  
 +
$  E $
 +
is an extension field of $  F $,  
 +
.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Sagle,  "Simple Malčev algebras over a field of characteristic zero"  ''Pacific J. Math.'' , '''12'''  (1962)  pp. 1057–1078</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  pp. 291  ((also: Dover, reprint, 1979))</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Sagle,  "Simple Malčev algebras over a field of characteristic zero"  ''Pacific J. Math.'' , '''12'''  (1962)  pp. 1057–1078</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  pp. 291  ((also: Dover, reprint, 1979))</TD></TR></table>

Latest revision as of 07:59, 6 June 2020


Moufang–Lie algebra

An algebra over a field satisfying the identities

$$ x ^ {2} = 0 ,\ \ J ( x , y , x z ) = \ J ( x , y , z ) x , $$

where $ J ( x , y , z ) = ( x y ) z + ( z x ) y + ( y z ) x $ is the Jacobian of $ x , y , z $. Mal'tsev algebras are a natural generalization of Lie algebras. Any Mal'tsev algebra is a binary Lie algebra.

Mal'tsev algebras were introduced by A.I. Mal'tsev [1], who called them Moufang–Lie algebras because of the connection with analytic Moufang loops (cf. Moufang loop). The tangent algebra of a locally analytic Moufang loop is a Mal'tsev algebra. The converse is also true: Any finite-dimensional Mal'tsev algebra over a complete normed field of characteristic zero is the tangent algebra of some locally analytic Moufang loop.

There is a close connection between Mal'tsev algebras and alternative algebras (see Alternative rings and algebras). The commutator algebra of an arbitrary alternative algebra, that is, the algebra obtained by replacing the original multiplication by the commutator operation

$$ [ x , y ] = x y - y x , $$

is a Mal'tsev algebra.

Every simple Mal'tsev algebra (cf. Simple algebra) of characteristic $ p \neq 2 $ is either a Lie algebra or is a $ 7 $- dimensional algebra over its centroid. Every primary Mal'tsev algebra (for $ p \neq 2 $, cf. also Primary ring) is either a Lie algebra or can be imbedded as a subring in a suitable $ 7 $- dimensional simple algebra over some field. An arbitrary semi-primary Mal'tsev algebra (for $ p \neq 2 $) can be isomorphically imbedded as a subalgebra in the commutator algebra of an alternative algebra. The question of imbedding an arbitrary Mal'tsev algebra in the commutator algebra of an alternative algebra is open (1989).

Let $ Z ( A) $ be the Lie centre of a Mal'tsev algebra $ A $:

$$ Z ( A) = \ \{ {n \in A } : {J ( n , a , b ) = 0 \ \textrm{ for all } a , b \in A } \} . $$

For any ideal $ I $ of a semi-primary Mal'tsev algebra $ A $( for $ p \neq 2 $), $ Z ( I) = Z ( A) \cap I $.

The properties of an algebraic Mal'tsev algebra (cf. Algebraic algebra) are similar to the properties of an algebraic Lie algebra (cf. Lie algebra, algebraic). In any algebraic Mal'tsev algebra (for $ p \neq 2 $) there is a locally finite radical, that is, a maximal locally finite ideal such that the quotient algebra with respect to it does not contain locally finite ideals. A Mal'tsev algebra of characteristic $ p \geq n $ or $ p = 0 $ satisfying the $ n $- th Engel condition (see Engel algebra) is locally nilpotent (cf. Locally nilpotent algebra). The difference between Mal'tsev algebras and Lie algebras manifests itself in the passage from local nilpotency to global. There is, for example, a Mal'tsev algebra $ ( p = 0 ) $ satisfying the third Engel condition and which is solvable of index 2, but is not nilpotent (cf. Nilpotent algebra).

For a Mal'tsev algebra there is an analogue of Engel's theorem, which played a major role in the structure theory of Lie algebras: A Mal'tsev algebra satisfying the Engel condition and the maximum condition for subalgebras is nilpotent. This result also holds in the more general case of binary Lie algebras.

In every free Mal'tsev algebra (for $ p \neq 2 $) there is a non-zero Lie centre. A free Mal'tsev algebra (for $ p \neq 2 $) with three or more generators is not a primary algebra. A free Mal'tsev algebra (for $ p \neq 2 $) with nine or more generators contains trivial ideals.

If $ R _ {n} $ is the variety of Mal'tsev algebras generated by the free Mal'tsev algebra on $ n $ generators and $ p = 0 $, then the chain of varieties

$$ R _ {1} \subseteq R _ {2} \subseteq \dots $$

does not stabilize at any finite stage.

The theory of finite-dimensional Mal'tsev algebras and their representations is well-developed. The fundamental results are similar to the results in the theory of Lie algebras. There are analogues of Lie's classical theorems: if $ \rho $ is a split representation of a solvable Mal'tsev algebra of characteristic $ 0 $, then all matrices $ \rho ( x) $ can be simultaneously reduced to triangular form; if $ \rho $ is a split representation of a nilpotent Mal'tsev algebra on a space $ V $, then $ V $ decomposes into a direct sum of weight subspaces $ V _ \alpha $, and the matrices of the bounded operators $ \rho ( x) $ in $ V _ \alpha $ can be simultaneously reduced to triangular form with the numbers $ \alpha ( x) $ on the main diagonal (cf. Representation of a Lie algebra).

The following results are similar to Cartan's solvability criterion and semi-simplicity of Lie algebras: if $ \rho $ is a faithful representation of a Mal'tsev algebra $ A $( $ p = 0 $) and if the bilinear form on $ A $ associated with $ \rho $ is trivial, then $ A $ is solvable; if $ \rho $ is a representation of a semi-simple Mal'tsev algebra, then the trace form associated with $ \rho $ is non-degenerate. If the Killing form of $ A $ is non-degenerate, then $ A $ is semi-simple.

Any representation of a semi-simple Mal'tsev algebra with $ p = 0 $ is completely reducible (cf. Reducible representation). If $ S $ is the radical (maximal solvable ideal) of a Mal'tsev algebra $ A $, $ N $ the nil radical (maximal nilpotent ideal), then for any derivation (cf. Derivation in a ring) $ D $ on $ A $, $ S D \subseteq N $.

An arbitrary finite-dimensional Mal'tsev algebra $ A $ of characteristic zero is the direct sum (as linear spaces) of its radical $ S $ and a semi-simple subalgebra $ B $ isomorphic to the quotient algebra of $ A $ by $ S $. Two semi-simple factors are conjugate by inner automorphisms (an analogue of the Levi–Mal'tsev–Harish-Chandra theorem for Lie algebras).

References

[1] A.I. Mal'tsev, "Analytic loops" Mat. Sb. , 36 : 3 (1955) pp. 569–576 (In Russian)
[2] A. Sagle, "Malcev algebras" Trans. Amer. Math. Soc. , 101 : 3 (1961) pp. 426–458
[3] E.N. Kuz'min, "Algebraic sets in Mal'tsev algebras" Algebra and Logic , 7 : 2 (1968) pp. 95–97 Algebra i Logika , 7 : 2 (1968) pp. 42–47
[4] E.N. Kuz'min, "Mal'tsev algebras and their representations" Algebra and Logic , 7 : 4 (1968) pp. 233–244 Algebra i Logika , 7 : 4 (1968) pp. 48–69
[5] E.N. Kuz'min, "On the relation between Mal'tsev algebras and analytic Moufang loops" Algebra and Logic , 10 : 1 (1971) pp. 1–14 Algebra i Logika , 10 : 1 (1971) pp. 3–22
[6] E.N. Kuz'min, "Levi's theorem for Mal'tsev algebras" Algebra and Logic , 16 : 4 (1977) pp. 286–291 Algebra i Logika , 16 : 4 (1977) pp. 424–431
[7] V.T. Filippov, "On Engelian Mal'tsev algebras" Algebra and Logic , 15 : 1 (1976) pp. 57–71 Algebra i Logika , 15 : 1 (1976) pp. 89–109
[8] V.T. Filippov, "Mal'tsev algebras" Algebra and Logic , 16 : 1 (1977) pp. 70–74 Algebra i Logika , 16 : 1 (1977) pp. 101–108
[9] A.N. Grishkov, "Analogues of Levi's theorem for Mal'tsev algebras" Algebra and Logic , 16 : 4 (1977) pp. 260–265 Algebra i Logika , 16 : 4 (1977) pp. 389–396
[10] I.P. Shestakov, "A problem of Shirshov" Algebra and Logic , 16 : 2 (1977) pp. 153–166 Algebra i Logika , 16 : 2 (1977) pp. 227–246

Comments

For an arbitrary algebra $ A $ over a field $ F $, the centroid $ E $ of $ A $ is the set of elements of the module endomorphisms $ \mathop{\rm Hom} _ {F} ( A, A) $ of $ A $ over $ F $ which commute for all $ x, y \in A $ with the left and right multiplications $ L _ {x} , R _ {y} \in \mathop{\rm Hom} _ {F} ( A, A) $. If $ A $ is simple over $ F $, $ E $ is an extension field of $ F $, .

References

[a1] A.A. Sagle, "Simple Malčev algebras over a field of characteristic zero" Pacific J. Math. , 12 (1962) pp. 1057–1078
[a2] N. Jacobson, "Lie algebras" , Interscience (1962) pp. 291 ((also: Dover, reprint, 1979))
How to Cite This Entry:
Mal'tsev algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mal%27tsev_algebra&oldid=14878
This article was adapted from an original article by V.T. Filippov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article