Namespaces
Variants
Actions

Macdonald function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


modified cylinder function, Bessel function of imaginary argument

A function

$$ K _ \nu ( z) = \frac \pi {2} \frac{I _ {- \nu } ( z) - I _ \nu ( z) }{\sin \nu \pi } , $$

where $ \nu $ is an arbitrary non-integral real number and

$$ I _ \nu ( z) = \ \sum _ {m=0}^ \infty \frac{\left ( \frac{z}{2} \right ) ^ {\nu + 2 m } }{m ! \Gamma ( \nu + m + 1 ) } $$

is a cylinder function with pure imaginary argument (cf. Cylinder functions). They have been discussed by H.M. Macdonald [1]. If $ n $ is an integer, then

$$ K _ {n} ( z) = \lim\limits _ {\nu \rightarrow n } K _ \nu ( z) . $$

The Macdonald function $ K _ \nu ( z) $ is the solution of the differential equation

$$ \tag{* } z ^ {2} \frac{d ^ {2} y }{d z ^ {2} } + z \frac{d y }{d z } - ( z ^ {2} + \nu ^ {2} ) y = 0 $$

that tends exponentially to zero as $ z \rightarrow \infty $ and takes positive values. The functions $ I _ \nu ( z) $ and $ K _ \nu ( z) $ form a fundamental system of solutions of (*).

For $ \nu \geq 0 $, $ K _ \nu ( z) $ has roots only when $ \mathop{\rm Re} z < 0 $. If $ \pi / 2 < | \mathop{\rm arg} z | < \pi $, then the number of roots in these two sectors is equal to the even number nearest to $ \nu - 1 / 2 $, provided that $ \nu - 1 / 2 $ is not an integer; in the latter case the number of roots is equal to $ \nu - 1 / 2 $. For $ \mathop{\rm arg} z = \pm \pi $ there are no roots if $ \nu - 1 / 2 $ is not an integer.

Series and asymptotic representations are:

$$ K _ {n + 1 / 2 } ( z) = \ \left ( \frac \pi {2z} \right ) ^ {1/2} e ^ {-z}\sum _ {r=0} ^ { n } \frac{( n + r ) ! }{r ! ( n - r ) ! ( 2 z ) ^ {r} } , $$

where $ n $ is a non-negative integer;

$$ K _ {0} ( z) = \ - \mathop{\rm ln} \left ( \frac{z}{2} \right ) I _ {0} ( z) + \sum _ {m=0}^ \infty \left ( \frac{z}{2} \right ) ^ {2m} \frac{1}{( m ! ) ^ {2} } \psi ( m + 1 ) , $$

$$ \psi ( 1) = - C ,\ \psi ( m + 1 ) = 1 + \frac{1}{2} + \dots + \frac{1}{m} - C , $$

where $ C = 0. 5772157 \dots $ is the Euler constant;

$$ K _ {n} ( z) = \ \frac{1}{2} \sum _ {m=0} ^ {n-1} \frac{( - 1 ) ^ {m} ( n - m - 1 ) ! }{m ! ( z / 2 ) ^ {n - 2 m } } + $$

$$ + ( - 1 ) ^ {n-1} \sum _ {m=0} ^ \infty \frac{( z / 2 ) ^ {n + 2 m } }{m ! ( n + m ) ! } \left \{ \mathop{\rm ln} \left ( \frac{z}{2} \right ) - \frac{\psi ( m + 1 ) - \psi ( n + m + 1 ) }{2} \right \} , $$

where $ n \geq 1 $ is an integer;

$$ K _ {\nu\ } \sim $$

$$ \sim \ \left ( \frac \pi {2z} \right ) ^ {1/2} e ^ {-z} \left [ 1 + \frac{ 4 \nu ^ {2} - 1 ^ {2} }{1 ! 8 z } + \frac{( 4 \nu ^ {2} - 1 ^ {2} ) ( 4 \nu ^ {2} - 3 ^ {2} ) }{2 ! ( 8 z ) ^ {2} } + \dots \right ] , $$

for large $ z $ and $ | \mathop{\rm arg} z | < \pi / 2 $.

Recurrence formulas:

$$ K _ {\nu - 1 } ( z) - K _ {\nu + 1 } ( z) = - \frac{2 \nu }{z} K _ \nu ( z) , $$

$$ K _ {\nu - 1 } ( z) + K _ {\nu + 1 } ( z) = - 2 \frac{d K _ \nu ( z) }{d z } . $$

References

[1] H.M. Macdonald, "Zeroes of the Bessel functions" Proc. London Math. Soc. , 30 (1899) pp. 165–179
[2] G.N. Watson, "A treatise on the theory of Bessel functions" , 1–2 , Cambridge Univ. Press (1952)
How to Cite This Entry:
Macdonald function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Macdonald_function&oldid=55226
This article was adapted from an original article by V.I. Pagurova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article