Namespaces
Variants
Actions

Möbius series

From Encyclopedia of Mathematics
Revision as of 17:11, 30 April 2016 by Richard Pinch (talk | contribs) (→‎Comments: link)
Jump to: navigation, search

A class of functions of the form $$ F_n(x) = \sum_{s=1}^\infty f(x^s) s^{-n} \ . $$ These series were investigated by A. Möbius [1], who found for a series (*) the inversion formula $$ f(x) = \sum_{s=1}^\infty \mu(s) F_n(x^s) s^{-n} \ , $$ where $\mu(s)$ is the Möbius function. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$

Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$

References

[1] A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123
[2] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)
[3] K. Prachar, "Primzahlverteilung" , Springer (1957)


Comments

All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under Dirichlet convolution, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.

The term "Möbius series" is also applied to the summatory function of the Möbius function $$ M(x) = \sum_{n \le x} \mu(n) \ . $$ Mertens conjectured in 1897 that the bound $|M(x)| < \sqrt x$ holds: this would imply the Riemann hypothesis. Odlyzko and te Riele disproved the Mertens conjecture in 1985.

References

How to Cite This Entry:
Möbius series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_series&oldid=38742
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article