Namespaces
Variants
Actions

Difference between revisions of "Möbius series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Moebius series to Möbius series over redirect: accented title)
(TeX done)
Line 1: Line 1:
A series of functions of the form
+
A class of functions of the form
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643001.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
F_n(x) = \sum_{s=1}^\infty f(x^s) s^{-n} \ .
 
+
$$
 
These series were investigated by A. Möbius [[#References|[1]]], who found for a series (*) the inversion formula
 
These series were investigated by A. Möbius [[#References|[1]]], who found for a series (*) the inversion formula
 +
$$
 +
f(x) = \sum_{s=1}^\infty \mu(s) F_n(x^s) s^{-n} \ ,
 +
$$
 +
where $\mu(s)$ is the [[Möbius function]]. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$:
 +
$$
 +
F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643002.png" /></td> </tr></table>
+
Another inversion formula: If $P(n)$ is a [[totally multiplicative function]] for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then
 
+
$$
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643003.png" /> is the [[Möbius function|Möbius function]]. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643004.png" />:
+
g(x) = \sum_{n \le x} P(n) f(x/n)
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643005.png" /></td> </tr></table>
 
 
 
Another inversion formula: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643006.png" /> is a totally-multiplicative function (cf. [[Multiplicative arithmetic function|Multiplicative arithmetic function]]) for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643007.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643008.png" /> is a function defined for all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m0643009.png" />, then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m06430010.png" /></td> </tr></table>
 
 
 
 
implies
 
implies
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m06430011.png" /></td> </tr></table>
+
f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ .
 +
$$
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Möbius,  "Ueber eine besondere Art der Umkehrung der Reihen"  ''J. Reine Angew. Math.'' , '''9'''  (1832)  pp. 105–123</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Möbius,  "Ueber eine besondere Art der Umkehrung der Reihen"  ''J. Reine Angew. Math.'' , '''9'''  (1832)  pp. 105–123</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064300/m06430012.png" /> under the convolution product, cf. (the editorial comments to) [[Möbius function|Möbius function]] and [[Multiplicative arithmetic function|Multiplicative arithmetic function]].
+
All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under the convolution product, cf. (the editorial comments to) [[Möbius function]] and [[Multiplicative arithmetic function]].
 +
 
 +
{{TEX|done}}

Revision as of 06:52, 30 April 2016

A class of functions of the form $$ F_n(x) = \sum_{s=1}^\infty f(x^s) s^{-n} \ . $$ These series were investigated by A. Möbius [1], who found for a series (*) the inversion formula $$ f(x) = \sum_{s=1}^\infty \mu(s) F_n(x^s) s^{-n} \ , $$ where $\mu(s)$ is the Möbius function. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$

Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$

References

[1] A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123
[2] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)
[3] K. Prachar, "Primzahlverteilung" , Springer (1957)


Comments

All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under the convolution product, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.

How to Cite This Entry:
Möbius series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_series&oldid=23420
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article