Namespaces
Variants
Actions

Difference between revisions of "Logical matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
l0607401.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/L060/L.0600740 Logical matrix
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A system
 
A system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607401.png" /></td> </tr></table>
+
$$
 +
\mathfrak M  = \langle  M ; D , \& , \lor , \supset , \neg \rangle ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607402.png" /> is a non-empty set; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607403.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607404.png" /> are binary operations; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607405.png" /> is a unary operation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607406.png" />. Any formula of propositional logic, constructed from propositional variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607407.png" /> by means of the logical connectives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607408.png" />, can be regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607409.png" />-place function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074010.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074011.png" /> are assumed to be variables with range of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074012.png" /> and the logical connectives are interpreted as the corresponding operations of the logical matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074013.png" />. A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074014.png" /> is said to be generally valid in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074015.png" /> if for any values of the variables in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074016.png" /> the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074017.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074018.png" />. A logical matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074019.png" /> is said to be characteristic for a propositional calculus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074020.png" /> if the formulas that are generally valid in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074021.png" /> are exactly those that are deducible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074022.png" />. An example of a logical matrix is the system
+
where $  M $
 +
is a non-empty set; $  D \subseteq M $;  
 +
$  \& , \lor , \supset $
 +
are [[binary operation]]s; and $  \neg $
 +
is a [[unary operation]] on $  M $.  
 +
Any formula of propositional logic, constructed from propositional variables $  p _ {1} \dots p _ {n} $
 +
by means of the logical connectives $  \& , \lor , \supset , \neg $,  
 +
can be regarded as an $  n $-
 +
place function on $  M $
 +
if $  p _ {1} \dots p _ {n} $
 +
are assumed to be variables with range of values $  M $
 +
and the logical connectives are interpreted as the corresponding operations of the logical matrix $  \mathfrak M $.  
 +
A formula $  \mathfrak A $
 +
is said to be generally valid in $  \mathfrak M $
 +
if for any values of the variables in $  M $
 +
the value of $  \mathfrak A $
 +
belongs to $  D $.  
 +
A logical matrix $  \mathfrak M $
 +
is said to be characteristic for a propositional calculus $  K $
 +
if the formulas that are generally valid in $  \mathfrak M $
 +
are exactly those that are deducible in $  K $.  
 +
An example of a logical matrix is the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074023.png" /></td> </tr></table>
+
$$
 +
\langle  \{ 0 , 1 \} ; \{ 1 \} , \& , \lor , \supset , \neg \rangle ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074024.png" /></td> </tr></table>
+
$$
 +
x \& y  = \min \{ x , y \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074025.png" /></td> </tr></table>
+
$$
 +
x \lor y  = \max \{ x , y \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074026.png" /></td> </tr></table>
+
$$
 
+
x \supset y  = \max \{ 1 - x , y \} ,
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074027.png" /></td> </tr></table>
+
$$
 
 
This logical matrix is characteristic for the classical propositional calculus. t logic','../p/p110060.htm','Set theory','../s/s084750.htm','Syntax','../s/s091900.htm','Undecidability','../u/u095140.htm','Unsolvability','../u/u095800.htm','ZFC','../z/z130100.htm')" style="background-color:yellow;">K. Gödel proved that it is impossible to construct a logical matrix with a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074028.png" /> that is characteristic for the intuitionistic propositional calculus.
 
  
 +
$$
 +
\neg x  =  1 - x .
 +
$$
  
 +
This logical matrix is characteristic for the classical propositional calculus. t logic','../p/p110060.htm','Set theory','../s/s084750.htm','Syntax','../s/s091900.htm','Undecidability','../u/u095140.htm','Unsolvability','../u/u095800.htm','ZFC','../z/z130100.htm')" style="background-color:yellow;">K. Gödel proved that it is impossible to construct a logical matrix with a finite set  $  M $
 +
that is characteristic for the intuitionistic propositional calculus.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Wójcicki,  "Theory of logical calculi" , Kluwer  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Wójcicki,  "Theory of logical calculi" , Kluwer  (1988)</TD></TR></table>

Latest revision as of 04:11, 6 June 2020


A system

$$ \mathfrak M = \langle M ; D , \& , \lor , \supset , \neg \rangle , $$

where $ M $ is a non-empty set; $ D \subseteq M $; $ \& , \lor , \supset $ are binary operations; and $ \neg $ is a unary operation on $ M $. Any formula of propositional logic, constructed from propositional variables $ p _ {1} \dots p _ {n} $ by means of the logical connectives $ \& , \lor , \supset , \neg $, can be regarded as an $ n $- place function on $ M $ if $ p _ {1} \dots p _ {n} $ are assumed to be variables with range of values $ M $ and the logical connectives are interpreted as the corresponding operations of the logical matrix $ \mathfrak M $. A formula $ \mathfrak A $ is said to be generally valid in $ \mathfrak M $ if for any values of the variables in $ M $ the value of $ \mathfrak A $ belongs to $ D $. A logical matrix $ \mathfrak M $ is said to be characteristic for a propositional calculus $ K $ if the formulas that are generally valid in $ \mathfrak M $ are exactly those that are deducible in $ K $. An example of a logical matrix is the system

$$ \langle \{ 0 , 1 \} ; \{ 1 \} , \& , \lor , \supset , \neg \rangle , $$

where

$$ x \& y = \min \{ x , y \} , $$

$$ x \lor y = \max \{ x , y \} , $$

$$ x \supset y = \max \{ 1 - x , y \} , $$

$$ \neg x = 1 - x . $$

This logical matrix is characteristic for the classical propositional calculus. t logic','../p/p110060.htm','Set theory','../s/s084750.htm','Syntax','../s/s091900.htm','Undecidability','../u/u095140.htm','Unsolvability','../u/u095800.htm','ZFC','../z/z130100.htm')" style="background-color:yellow;">K. Gödel proved that it is impossible to construct a logical matrix with a finite set $ M $ that is characteristic for the intuitionistic propositional calculus.

Comments

References

[a1] R. Wójcicki, "Theory of logical calculi" , Kluwer (1988)
How to Cite This Entry:
Logical matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logical_matrix&oldid=16307
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article