Namespaces
Variants
Actions

Difference between revisions of "Lobatto quadrature formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m
 
Line 2: Line 2:
 
A quadrature formula of highest algebraic degree of accuracy for the interval $[a,b]=[-1,1]$ and weight $p(x)=1$ with two fixed nodes: the end-points of $[-1,1]$. The Lobatto quadrature formula has the form
 
A quadrature formula of highest algebraic degree of accuracy for the interval $[a,b]=[-1,1]$ and weight $p(x)=1$ with two fixed nodes: the end-points of $[-1,1]$. The Lobatto quadrature formula has the form
  
$$\int\limits_{-1}^1f(x)dx\cong A[f(-1)+f(1)]+\sum_{j=1}^nC_jf(x_j).$$
+
$$\int\limits_{-1}^1f(x)\,dx\cong A[f(-1)+f(1)]+\sum_{j=1}^nC_jf(x_j).$$
  
 
The points $x_j$ are the roots of the polynomial $P_n^{(1,1)}(x)$ (a Jacobi polynomial), orthogonal on $[-1,1]$ with respect to the weight $1-x^2$, $A=2/(n+1)(n+2)$ and $C_j>0$. The algebraic degree of accuracy is $2n+1$. A table of nodes and coefficients of the Lobatto quadrature formula for $n=1(1)15$ ($n$ varies from 1 to 15 with step 1) was given in [[#References|[2]]] (see also [[#References|[3]]]).
 
The points $x_j$ are the roots of the polynomial $P_n^{(1,1)}(x)$ (a Jacobi polynomial), orthogonal on $[-1,1]$ with respect to the weight $1-x^2$, $A=2/(n+1)(n+2)$ and $C_j>0$. The algebraic degree of accuracy is $2n+1$. A table of nodes and coefficients of the Lobatto quadrature formula for $n=1(1)15$ ($n$ varies from 1 to 15 with step 1) was given in [[#References|[2]]] (see also [[#References|[3]]]).

Latest revision as of 20:21, 1 January 2019

A quadrature formula of highest algebraic degree of accuracy for the interval $[a,b]=[-1,1]$ and weight $p(x)=1$ with two fixed nodes: the end-points of $[-1,1]$. The Lobatto quadrature formula has the form

$$\int\limits_{-1}^1f(x)\,dx\cong A[f(-1)+f(1)]+\sum_{j=1}^nC_jf(x_j).$$

The points $x_j$ are the roots of the polynomial $P_n^{(1,1)}(x)$ (a Jacobi polynomial), orthogonal on $[-1,1]$ with respect to the weight $1-x^2$, $A=2/(n+1)(n+2)$ and $C_j>0$. The algebraic degree of accuracy is $2n+1$. A table of nodes and coefficients of the Lobatto quadrature formula for $n=1(1)15$ ($n$ varies from 1 to 15 with step 1) was given in [2] (see also [3]).

The formula was established by R. Lobatto (see [1]).

References

[1] R. Lobatto, "Lessen over de differentiaal- en integraalrekening" , 1–2 , 's Gravenhage (1851–1852)
[2] V.I. Krylov, "Approximate calculation of integrals" , Macmillan (1962) (Translated from Russian)
[3] H.H. Michels, "Abscissas and weight coefficients for Lobatto quadrature" Math. Comp. , 17 (1963) pp. 237–244


Comments

For the notion of algebraic degree of accuracy of a quadrature formula see Quadrature formula.

References

[a1] A.H. Stroud, "Gaussian quadrature formulas" , Prentice-Hall (1966)
How to Cite This Entry:
Lobatto quadrature formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lobatto_quadrature_formula&oldid=43636
This article was adapted from an original article by I.P. Mysovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article