Namespaces
Variants
Actions

Difference between revisions of "Lituus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(svg picture)
 
Line 4: Line 4:
 
$$\rho=\frac{a}{\sqrt\phi}.$$
 
$$\rho=\frac{a}{\sqrt\phi}.$$
  
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/l059750a.gif" />
+
[[File:Lituus.svg|center|400px|Lituus]]
 
 
Figure: l059750a
 
  
 
To every value of $\phi$ correspond two values of $\rho$, one positive and one negative. The curve consists of two branches, that both approach the pole asymptotically (see Fig.). The line $\phi=0,\phi=\pi$ is an asymptote at $\rho=\pm\infty$, and $(1/2,a\sqrt2)$ and $(-1/2,-a\sqrt2)$ are points of inflection. The lituus is related to the so-called algebraic [[Spirals|spirals]].
 
To every value of $\phi$ correspond two values of $\rho$, one positive and one negative. The curve consists of two branches, that both approach the pole asymptotically (see Fig.). The line $\phi=0,\phi=\pi$ is an asymptote at $\rho=\pm\infty$, and $(1/2,a\sqrt2)$ and $(-1/2,-a\sqrt2)$ are points of inflection. The lituus is related to the so-called algebraic [[Spirals|spirals]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
+
* {{Ref|1}} A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)
 
 
 
 
 
 
====Comments====
 
 
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Gomes Teixeira,  "Traité des courbes" , '''1–3''' , Chelsea, reprint  (1971)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Gomes Teixeira,  "Traité des courbes" , '''1–3''' , Chelsea, reprint  (1971)</TD></TR></table>

Latest revision as of 19:32, 16 March 2023

A plane transcendental curve whose equation in polar coordinates is

$$\rho=\frac{a}{\sqrt\phi}.$$

Lituus

To every value of $\phi$ correspond two values of $\rho$, one positive and one negative. The curve consists of two branches, that both approach the pole asymptotically (see Fig.). The line $\phi=0,\phi=\pi$ is an asymptote at $\rho=\pm\infty$, and $(1/2,a\sqrt2)$ and $(-1/2,-a\sqrt2)$ are points of inflection. The lituus is related to the so-called algebraic spirals.

References

  • [1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)

References

[a1] K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)
[a2] F. Gomes Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971)
How to Cite This Entry:
Lituus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lituus&oldid=32535
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article