Namespaces
Variants
Actions

Difference between revisions of "Lipschitz condition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(typo)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A restriction on the behaviour of increase of a function. If for any points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596901.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596902.png" /> belonging to an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596903.png" /> the increase of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596904.png" /> satisfies the inequality
+
{{MSC|54E40}}
 +
[[Category:Analysis]]
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596905.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
====Definition====
 +
The term is used for a bound on the [[Continuity, modulus of|modulus of continuity]] a function. In particular, a function $f:[a,b]\to \mathbb R$ is said to satisfy the Lipschitz condition if there is a constant $M$ such that
 +
\begin{equation}\label{eq:1}
 +
|f(x)-f(x')| \leq M|x-x'|\qquad \forall x,x'\in [a,b]\, .
 +
\end{equation}
 +
The smallest constant $M$ satisfying \eqref{eq:1} is called [[Lipschitz constant]]. The condition has an obvious generalization to vector-valued maps defined on any subset of the euclidean space $\mathbb R^n$: indeed it can be easily extended to maps between metric spaces (see [[Lipschitz function]]).
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596906.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596907.png" /> is a constant, then one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l0596908.png" /> satisfies a Lipschitz condition of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969010.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969011.png" /> and writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969013.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969014.png" />. Every function that satisfies a Lipschitz condition with some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969015.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969016.png" /> is uniformly continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969017.png" />, and functions that satisfy a Lipschitz condition of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969018.png" /> are absolutely continuous (cf. [[Absolute continuity|Absolute continuity]]; [[Uniform continuity|Uniform continuity]]). A function that has a bounded derivative on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969019.png" /> satisfies a Lipschitz condition on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969020.png" /> with any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969021.png" />.
+
====Historical remarks====
 +
The condition was first considered by Lipschitz in {{Cite|Li}} in his study of the convergence of the Fourier series of a periodic function $f$. More precisely, it is shown in {{Cite|Li}} that, if a periodic function $f:\mathbb R \to \mathbb R$ satisfies the inequality
 +
\begin{equation}\label{eq:2}
 +
|f(x)-f(x')|\leq M |x-x'|^\alpha \qquad \forall x,x'\in \mathbb R
 +
\end{equation}
 +
(where $0<\alpha\leq 1$ and $M$ are fixed constants), then the Fourier series of $f$ converges everywhere to the value of $f$. This conclusion can be derived, for instance, from the [[Dini-Lipschitz criterion]] and the convergence is indeed uniform. For this reason some authors (especially in the past) use the term Lipschitz condition for the weaker inequality \eqref{eq:2}. However, the most common terminology for such condition is [[Hölder condition]] with Hölder exponent $\alpha$.
  
The Lipschitz condition (*) is equivalent to the condition
+
====Properties====
 +
Every function that satisfies \eqref{eq:2} is [[Uniform continuity|uniformly continuous]]. Lipschitz functions of one real variable are, in addition, [[Absolute continuity|absolutely continuous]]; however such property is in general false for Hölder functions with exponent $\alpha<1$. Lipschitz functions on Euclidean sets are almost everywhere differentiable (cf. [[Rademacher theorem]]; again this property does not hold for general Hölder functions). By the mean value theorem, any function $f:[a,b]\to \mathbb R$ which is everywhere differentiable and has bounded derivative is a Lipschitz function. In fact it can be easily seen that in this case the Lipschitz constant of $f$ equals
 +
\[
 +
\sup_x |f'(x)|\, .
 +
\]
 +
The statement can generalized to differentiable functions on convex subsets of $\mathbb R^n$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969022.png" /></td> </tr></table>
+
If we denote by $\omega(\delta,f)$ the modulus of continuity of a function $f$, namely the quantity
 +
\[
 +
\omega (\delta, f) = \sup_{|x-y|\leq \delta} |f(x)-f(y)|\, ,
 +
\]
 +
then \eqref{eq:2} can be restated as the inequality $\omega (\delta, f) \leq M \delta^\alpha$.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969023.png" /> is the modulus of continuity (cf. [[Continuity, modulus of|Continuity, modulus of]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969024.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969025.png" />. Lipschitz conditions were first considered by R. Lipschitz [[#References|[1]]] as a sufficient condition for the convergence of the [[Fourier series|Fourier series]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969026.png" />. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969027.png" /> the condition (*) is also called a [[Hölder condition|Hölder condition]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059690/l05969028.png" />.
+
====Function spaces====
 +
Consider $\Omega\subset \mathbb R^n$. It is common to endow the space of Lipschitz functions on $\Omega$, often denoted by ${\rm Lip}\, (\Omega)$ with the seminorm
 +
\[
 +
[f]_1 := \sup_{x\neq y} \frac{|f(x)-f(y)|}{|x-y|}\, ,
 +
\]
 +
which is just the Lipschitz constant of $f$. Similarly, for functions as in \eqref{eq:2} it is customary to define the Hölder seminorm
 +
\[
 +
[f]_\alpha := \sup_{x\neq y} \frac{|f(x)-f(y)|}{|x-y|^\alpha}\, .
 +
\]
 +
If the functions in question are also bounded, one can define the norm $\|f\|_{0, \alpha} = \sup_x |f(x)| + [f]_\alpha$. The corresponding normed vector spaces are [[Banach space|Banach spaces]], usually denoted by $C^{0,\alpha} (\Omega)$, which are just particular examples of [[Hölder space|Hölder spaces]]. For $C^{0,1}$ some authors also use the notation ${\rm Lip}_b$. Under appropriate assumptions on the domain $\Omega$, $C^{0,\alpha} (\Omega)$ coincides with the [[Sobolev space|Sobolev spaces]] $W^{\alpha, \infty} (\Omega)$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Lipschitz,  "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio"  ''J. Reine Angew. Math.'' , '''63'''  (1864)  pp. 296–308</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.P. Natanson,  "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965(Translated from Russian)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Ad}}|| R. A. Adams, J. J. F. Fournier, "Sobolev Spaces", Academic Press, 2nd edition, 2003
 +
|-
 +
|valign="top"|{{Ref|EG}}|| L.C. Evans, R.F. Gariepy, "Measure theory  and fine properties of    functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL,      1992. {{MR|1158660}} {{ZBL|0804.2800}}
 +
|-
 +
|valign="top"|{{Ref|GT}}|| D. Gilbarg,  N.S.  Trudinger,  "Elliptic partial differential equations of second order" ,  Springer  (1983)
 +
|-
 +
|valign="top"|{{Ref|Li}}|| R. Lipschitz,  "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio"  ''J. Reine Angew. Math.'' , '''63'''  (1864)  pp. 296–308 {{MR|}} {{ZBL|}}
 +
|-
 +
|valign="top"|{{Ref|Na}}|| I.P. Natanson,  "Constructive function theory" , '''1–3''' , F. Ungar  (1964–1965) (Translated from Russian) {{MR|1868029}} {{MR|0196342}}  {{MR|0196341}} {{MR|0196340}} {{ZBL|1034.01022}} {{ZBL|0178.39701}}  {{ZBL|0136.36302}} {{ZBL|0133.31101}}
 +
|-
 +
|valign="top"|{{Ref|Zy }}||A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988{{MR|0933759}} {{ZBL|0628.42001}}
 +
|-
 +
|}

Latest revision as of 09:19, 17 June 2014

2020 Mathematics Subject Classification: Primary: 54E40 [MSN][ZBL]

Definition

The term is used for a bound on the modulus of continuity a function. In particular, a function $f:[a,b]\to \mathbb R$ is said to satisfy the Lipschitz condition if there is a constant $M$ such that \begin{equation}\label{eq:1} |f(x)-f(x')| \leq M|x-x'|\qquad \forall x,x'\in [a,b]\, . \end{equation} The smallest constant $M$ satisfying \eqref{eq:1} is called Lipschitz constant. The condition has an obvious generalization to vector-valued maps defined on any subset of the euclidean space $\mathbb R^n$: indeed it can be easily extended to maps between metric spaces (see Lipschitz function).

Historical remarks

The condition was first considered by Lipschitz in [Li] in his study of the convergence of the Fourier series of a periodic function $f$. More precisely, it is shown in [Li] that, if a periodic function $f:\mathbb R \to \mathbb R$ satisfies the inequality \begin{equation}\label{eq:2} |f(x)-f(x')|\leq M |x-x'|^\alpha \qquad \forall x,x'\in \mathbb R \end{equation} (where $0<\alpha\leq 1$ and $M$ are fixed constants), then the Fourier series of $f$ converges everywhere to the value of $f$. This conclusion can be derived, for instance, from the Dini-Lipschitz criterion and the convergence is indeed uniform. For this reason some authors (especially in the past) use the term Lipschitz condition for the weaker inequality \eqref{eq:2}. However, the most common terminology for such condition is Hölder condition with Hölder exponent $\alpha$.

Properties

Every function that satisfies \eqref{eq:2} is uniformly continuous. Lipschitz functions of one real variable are, in addition, absolutely continuous; however such property is in general false for Hölder functions with exponent $\alpha<1$. Lipschitz functions on Euclidean sets are almost everywhere differentiable (cf. Rademacher theorem; again this property does not hold for general Hölder functions). By the mean value theorem, any function $f:[a,b]\to \mathbb R$ which is everywhere differentiable and has bounded derivative is a Lipschitz function. In fact it can be easily seen that in this case the Lipschitz constant of $f$ equals \[ \sup_x |f'(x)|\, . \] The statement can generalized to differentiable functions on convex subsets of $\mathbb R^n$.

If we denote by $\omega(\delta,f)$ the modulus of continuity of a function $f$, namely the quantity \[ \omega (\delta, f) = \sup_{|x-y|\leq \delta} |f(x)-f(y)|\, , \] then \eqref{eq:2} can be restated as the inequality $\omega (\delta, f) \leq M \delta^\alpha$.

Function spaces

Consider $\Omega\subset \mathbb R^n$. It is common to endow the space of Lipschitz functions on $\Omega$, often denoted by ${\rm Lip}\, (\Omega)$ with the seminorm \[ [f]_1 := \sup_{x\neq y} \frac{|f(x)-f(y)|}{|x-y|}\, , \] which is just the Lipschitz constant of $f$. Similarly, for functions as in \eqref{eq:2} it is customary to define the Hölder seminorm \[ [f]_\alpha := \sup_{x\neq y} \frac{|f(x)-f(y)|}{|x-y|^\alpha}\, . \] If the functions in question are also bounded, one can define the norm $\|f\|_{0, \alpha} = \sup_x |f(x)| + [f]_\alpha$. The corresponding normed vector spaces are Banach spaces, usually denoted by $C^{0,\alpha} (\Omega)$, which are just particular examples of Hölder spaces. For $C^{0,1}$ some authors also use the notation ${\rm Lip}_b$. Under appropriate assumptions on the domain $\Omega$, $C^{0,\alpha} (\Omega)$ coincides with the Sobolev spaces $W^{\alpha, \infty} (\Omega)$.

References

[Ad] R. A. Adams, J. J. F. Fournier, "Sobolev Spaces", Academic Press, 2nd edition, 2003
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[GT] D. Gilbarg, N.S. Trudinger, "Elliptic partial differential equations of second order" , Springer (1983)
[Li] R. Lipschitz, "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio" J. Reine Angew. Math. , 63 (1864) pp. 296–308
[Na] I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian) MR1868029 MR0196342 MR0196341 MR0196340 Zbl 1034.01022 Zbl 0178.39701 Zbl 0136.36302 Zbl 0133.31101
[Zy ] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001
How to Cite This Entry:
Lipschitz condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_condition&oldid=14093
This article was adapted from an original article by A.V. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article