Namespaces
Variants
Actions

Difference between revisions of "Lie algebra, nil"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
A [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584601.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584602.png" /> defined by the presence of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584603.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584604.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584605.png" />, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584606.png" />. The main question about nil Lie algebras concerns the conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584608.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584609.png" /> under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846010.png" /> is (locally) nilpotent (see [[Lie algebra, nilpotent|Lie algebra, nilpotent]]). A nil Lie algebra that is finite-dimensional over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846011.png" /> is nilpotent. On the other hand, over any field there are finitely-generated nil Lie algebras that are not nilpotent [[#References|[1]]]. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846012.png" /> is a constant. A nil Lie algebra is locally nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846013.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846015.png" /> (Kostrikin's theorem, [[#References|[2]]]). Local nilpotency also holds in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846016.png" /> is locally solvable. An infinitely-generated nil Lie algebra is not necessarily nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846017.png" /> (see [[#References|[3]]]), and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846018.png" /> non-nilpotency can still occur under the condition of solvability. Recently it has been proved by E.I. Zel'myanov that a nil Lie algebra is nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846019.png" /> (cf. [[#References|[6]]]) and that a nil algebra is also locally nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846020.png" />. The study of nil Lie algebras over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846021.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846022.png" /> is closely connected with the [[Burnside problem|Burnside problem]].
+
A
 +
[[Lie algebra|Lie algebra]] ${\mathfrak g}$ over a field $k$ defined by the
 +
presence of a function $n:{\mathfrak g}\times{\mathfrak g}\to{\mathbb N}$ such that $({\rm ad}\; x)^{n(x,y)}(y) = 0$, where $({\rm ad}\; x)(y) = [x,y]$, for any $x,y\in{\mathfrak g}$. The
 +
main question about nil Lie algebras concerns the conditions on ${\mathfrak g}$,
 +
$k$, $n$ under which ${\mathfrak g}$ is (locally) nilpotent (see
 +
[[Lie algebra, nilpotent|Lie algebra, nilpotent]]). A nil Lie algebra
 +
that is finite-dimensional over $k$ is nilpotent. On the other hand,
 +
over any field there are finitely-generated nil Lie algebras that are
 +
not nilpotent
 +
[[#References|[1]]]. Suppose that $n$ is a constant. A nil Lie algebra
 +
is locally nilpotent if ${\rm char}\; k = 0$ or if $m\le p+1$, where $p={\rm char}\; k>0$ (Kostrikin's theorem,
 +
[[#References|[2]]]). Local nilpotency also holds in the case when ${\mathfrak g}$
 +
is locally solvable. An infinitely-generated nil Lie algebra is not
 +
necessarily nilpotent if $n\ge p-2$ (see
 +
[[#References|[3]]]), and for $n\ge p+1$ non-nilpotency can still occur under
 +
the condition of solvability. Recently it has been proved by
 +
E.I. Zel'myanov that a nil Lie algebra is nilpotent if ${\rm char}\; k = 0$ (cf.
 +
[[#References|[6]]]) and that a nil algebra is also locally nilpotent
 +
if $n> p+1$. The study of nil Lie algebras over a field $k$ of
 +
characteristic $p>0$ is closely connected with the
 +
[[Burnside problem|Burnside problem]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.S. Golod,   "On nil-algebras and residually finite groups" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' : 2 (1964) pp. 273–276 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Kostrikin,   "On Burnside's problem" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' : 1 (1959) pp. 3–34 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.P. Razmyslov,   "On Lie algebras satisfying the Engel condition" ''Algebra and Logic'' , '''10''' : 1 (1971) pp. 21–29 ''Algebra i Logika'' , '''10''' : 1 (1971) pp. 33–44</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu. [Yu.A. Bakhturin] Bahturin,   "Lectures on Lie algebras" , Akademie Verlag (1978)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Braun,   "Lie rings and the Engel condition" ''J. of Algebra'' , '''31''' (1974) pp. 287–292</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.I. Kostrikin,   "Around Burnside" , Springer (1989) (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD
 +
valign="top"> E.S. Golod, "On nil-algebras and residually finite
 +
groups" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' : 2 (1964)
 +
pp. 273–276 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD
 +
valign="top"> A.I. Kostrikin, "On Burnside's problem"
 +
''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' : 1 (1959) pp. 3–34 (In
 +
Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">
 +
Yu.P. Razmyslov, "On Lie algebras satisfying the Engel condition"
 +
''Algebra and Logic'' , '''10''' : 1 (1971) pp. 21–29 ''Algebra i
 +
Logika'' , '''10''' : 1 (1971) pp. 33–44</TD></TR><TR><TD
 +
valign="top">[4]</TD> <TD valign="top"> Yu. [Yu.A. Bakhturin]
 +
Bahturin, "Lectures on Lie algebras" , Akademie Verlag
 +
(1978)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">
 +
A. Braun, "Lie rings and the Engel condition" ''J. of Algebra'' ,
 +
'''31''' (1974) pp. 287–292</TD></TR><TR><TD valign="top">[6]</TD> <TD
 +
valign="top"> A.I. Kostrikin, "Around Burnside" , Springer (1989)
 +
(Translated from Russian)</TD></TR></table>
  
  
Line 10: Line 46:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Jacobson,   "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Humphreys,   "Introduction to Lie algebras and representation theory" , Springer (1972) pp. §5.4</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD
 +
valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962)
 +
((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[a2]</TD>
 +
<TD valign="top"> J.E. Humphreys, "Introduction to Lie algebras and
 +
representation theory" , Springer (1972) pp. §5.4</TD></TR></table>

Revision as of 09:20, 12 September 2011

A Lie algebra ${\mathfrak g}$ over a field $k$ defined by the presence of a function $n:{\mathfrak g}\times{\mathfrak g}\to{\mathbb N}$ such that $({\rm ad}\; x)^{n(x,y)}(y) = 0$, where $({\rm ad}\; x)(y) = [x,y]$, for any $x,y\in{\mathfrak g}$. The main question about nil Lie algebras concerns the conditions on ${\mathfrak g}$, $k$, $n$ under which ${\mathfrak g}$ is (locally) nilpotent (see Lie algebra, nilpotent). A nil Lie algebra that is finite-dimensional over $k$ is nilpotent. On the other hand, over any field there are finitely-generated nil Lie algebras that are not nilpotent [1]. Suppose that $n$ is a constant. A nil Lie algebra is locally nilpotent if ${\rm char}\; k = 0$ or if $m\le p+1$, where $p={\rm char}\; k>0$ (Kostrikin's theorem, [2]). Local nilpotency also holds in the case when ${\mathfrak g}$ is locally solvable. An infinitely-generated nil Lie algebra is not necessarily nilpotent if $n\ge p-2$ (see [3]), and for $n\ge p+1$ non-nilpotency can still occur under the condition of solvability. Recently it has been proved by E.I. Zel'myanov that a nil Lie algebra is nilpotent if ${\rm char}\; k = 0$ (cf. [6]) and that a nil algebra is also locally nilpotent if $n> p+1$. The study of nil Lie algebras over a field $k$ of characteristic $p>0$ is closely connected with the Burnside problem.

References

[1] E.S. Golod, "On nil-algebras and residually finite

groups" Izv. Akad. Nauk SSSR Ser. Mat. , 28 : 2 (1964)

pp. 273–276 (In Russian)
[2] A.I. Kostrikin, "On Burnside's problem"

Izv. Akad. Nauk SSSR Ser. Mat. , 23 : 1 (1959) pp. 3–34 (In

Russian)
[3]

Yu.P. Razmyslov, "On Lie algebras satisfying the Engel condition" Algebra and Logic , 10 : 1 (1971) pp. 21–29 Algebra i

Logika , 10 : 1 (1971) pp. 33–44
[4] Yu. [Yu.A. Bakhturin]

Bahturin, "Lectures on Lie algebras" , Akademie Verlag

(1978)
[5]

A. Braun, "Lie rings and the Engel condition" J. of Algebra ,

31 (1974) pp. 287–292
[6] A.I. Kostrikin, "Around Burnside" , Springer (1989) (Translated from Russian)


Comments

References

[a1] N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))
[a2] J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972) pp. §5.4
How to Cite This Entry:
Lie algebra, nil. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_algebra,_nil&oldid=19574
This article was adapted from an original article by Yu.A. Bakhturin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article