Namespaces
Variants
Actions

Difference between revisions of "Lie algebra, free"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎Comments: better)
m (+ category)
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
''over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584101.png" />''
+
''over a ring $R$''
  
A [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584102.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584103.png" /> in which one can distinguish a free generating set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584104.png" />, a mapping from which into an arbitrary algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584105.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584106.png" /> can be be extended to a homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584107.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584108.png" />. The cardinality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l0584109.png" /> completely determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841010.png" /> and is called its rank. A free Lie algebra is a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841011.png" />-module (for bases of it see [[Basic commutator|Basic commutator]]). A subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841012.png" /> of a free Lie algebra over a field is itself a free Lie algebra (Shirshov's theorem, [[#References|[1]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841013.png" />, then this is true only under the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841014.png" /> is a free Abelian group [[#References|[2]]]. The finitely-generated subalgebras of a free Lie algebra over a field form a sublattice of the lattice of all subalgebras [[#References|[3]]]. W. Magnus [[#References|[4]]] established canonical connections between free Lie algebras and both free groups and free associative algebras.
+
A [[Lie algebra]] $L = L(X)$ over $R$ in which one can distinguish a free generating set $X$, a mapping from which into an arbitrary algebra $G$ over $R$ can be be extended to a homomorphism from $L$ into $G$. The cardinality of $X$ completely determines $L$ and is called its rank. A free Lie algebra is a free $R$-module (for bases of it see [[Basic commutator]]). A subalgebra $M$ of a free Lie algebra over a field is itself a free Lie algebra (Shirshov's theorem, [[#References|[1]]]). If $R = \mathbf{Z}$, then this is true only under the condition that $L/M$ is a free Abelian group [[#References|[2]]]. The finitely-generated subalgebras of a free Lie algebra over a field form a sublattice of the [[lattice]] of all subalgebras [[#References|[3]]]. W. Magnus [[#References|[4]]] established canonical connections between free Lie algebras and both [[free group]]s and [[free associative algebra]]s.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Shirshov,  "Subalgebras of free Lie algebras"  ''Mat. Sb.'' , '''33''' :  2  (1953)  pp. 441–452  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Witt,  "Die Unterringe der freien Lieschen Ringe"  ''Math. Z.'' , '''64'''  (1956)  pp. 195–216</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.P. Kukin,  "Intersection of subalgebras of a free Lie algebra"  ''Algebra and Logic'' , '''16'''  (1977)  pp. 387–394  ''Algebra i Logika'' , '''16'''  (1977)  pp. 577–587</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W. Magnus,  "Ueber Beziehungen zwischen höheren Kommutatoren"  ''J. Reine Angew. Math.'' , '''177'''  (1937)  pp. 105–115</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Yu.A. Bakhturin,  "Identical relations in Lie algebras" , VNU , Utrecht  (1987)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Shirshov,  "Subalgebras of free Lie algebras"  ''Mat. Sb.'' , '''33''' :  2  (1953)  pp. 441–452  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  E. Witt,  "Die Unterringe der freien Lieschen Ringe"  ''Math. Z.'' , '''64'''  (1956)  pp. 195–216</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  G.P. Kukin,  "Intersection of subalgebras of a free Lie algebra"  ''Algebra and Logic'' , '''16'''  (1977)  pp. 387–394  ''Algebra i Logika'' , '''16'''  (1977)  pp. 577–587</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  W. Magnus,  "Ueber Beziehungen zwischen höheren Kommutatoren"  ''J. Reine Angew. Math.'' , '''177'''  (1937)  pp. 105–115</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  Yu.A. Bakhturin,  "Identical relations in Lie algebras" , VNU , Utrecht  (1987)  (Translated from Russian)</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
To construct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841015.png" /> one can start from the free associative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841016.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841017.png" />, which is made into a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841018.png" /> by taking as Lie product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841019.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841020.png" /> is the Lie subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841021.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841022.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841023.png" /> is the universal enveloping algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841024.png" />.
+
To construct $L(X)$ one can start from the [[free associative algebra]] $A(X)$ generated by $X$, which is made into a Lie algebra $A(X)$ by taking as Lie product $[a,b] = a \cdot b - b \cdot a$. Then $L(X)$ is the Lie subalgebra of $A(X)$ generated by $X$, and $A(X)$ is the [[universal enveloping algebra]] of $L(X)$.
  
In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841025.png" /> is a field of characteristic 0, more precise results on which elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841026.png" /> belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841027.png" /> are given by the Specht–Wever theorem and the Friedrichs theorem, respectively. The first one says that a homogeneous element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841028.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841029.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841030.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841032.png" /> is the linear mapping defined by
+
In case $R$ is a field of characteristic 0, more precise results on which elements of $A(X)$ belong to $L(X)$ are given by the Specht–Wever theorem and the Friedrichs theorem, respectively. The first one says that a homogeneous element $a$ of degree $m$ belongs to $L(X)$ if and only if $\sigma(a) = ma$, where $\sigma$ is the linear mapping defined by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841033.png" /></td> </tr></table>
+
\sigma(x_1 \ldots x_m) = [\ldots[x_1,x_2],\ldots, x_m]
 
+
$$
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841034.png" />. Friedrichs' theorem says for the case of finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841035.png" /> that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841036.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841037.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841039.png" /> is the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841040.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841041.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058410/l05841042.png" />.
+
for $x_i \in X$. Friedrichs' theorem says for the case of finite $X$ that $a \in A(X)$ belongs to $L(X)$ if and only if $\delta(a) = 1 \otimes a + a \otimes 1$, where $\delta : A(X) \rightarrow A(X) \otimes A(X)$ is the homomorphism defined by $\delta : x \mapsto 1 \otimes x + x \otimes 1$ for $x \in X$.
  
 
Free Lie algebras are the best context for the formulation of the [[Campbell–Baker–Hausdorff formula]] in its most general form.
 
Free Lie algebras are the best context for the formulation of the [[Campbell–Baker–Hausdorff formula]] in its most general form.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}
 +
[[Category:Nonassociative rings and algebras]]

Latest revision as of 19:53, 15 March 2023

over a ring $R$

A Lie algebra $L = L(X)$ over $R$ in which one can distinguish a free generating set $X$, a mapping from which into an arbitrary algebra $G$ over $R$ can be be extended to a homomorphism from $L$ into $G$. The cardinality of $X$ completely determines $L$ and is called its rank. A free Lie algebra is a free $R$-module (for bases of it see Basic commutator). A subalgebra $M$ of a free Lie algebra over a field is itself a free Lie algebra (Shirshov's theorem, [1]). If $R = \mathbf{Z}$, then this is true only under the condition that $L/M$ is a free Abelian group [2]. The finitely-generated subalgebras of a free Lie algebra over a field form a sublattice of the lattice of all subalgebras [3]. W. Magnus [4] established canonical connections between free Lie algebras and both free groups and free associative algebras.

References

[1] A.I. Shirshov, "Subalgebras of free Lie algebras" Mat. Sb. , 33 : 2 (1953) pp. 441–452 (In Russian)
[2] E. Witt, "Die Unterringe der freien Lieschen Ringe" Math. Z. , 64 (1956) pp. 195–216
[3] G.P. Kukin, "Intersection of subalgebras of a free Lie algebra" Algebra and Logic , 16 (1977) pp. 387–394 Algebra i Logika , 16 (1977) pp. 577–587
[4] W. Magnus, "Ueber Beziehungen zwischen höheren Kommutatoren" J. Reine Angew. Math. , 177 (1937) pp. 105–115
[5] Yu.A. Bakhturin, "Identical relations in Lie algebras" , VNU , Utrecht (1987) (Translated from Russian)


Comments

To construct $L(X)$ one can start from the free associative algebra $A(X)$ generated by $X$, which is made into a Lie algebra $A(X)$ by taking as Lie product $[a,b] = a \cdot b - b \cdot a$. Then $L(X)$ is the Lie subalgebra of $A(X)$ generated by $X$, and $A(X)$ is the universal enveloping algebra of $L(X)$.

In case $R$ is a field of characteristic 0, more precise results on which elements of $A(X)$ belong to $L(X)$ are given by the Specht–Wever theorem and the Friedrichs theorem, respectively. The first one says that a homogeneous element $a$ of degree $m$ belongs to $L(X)$ if and only if $\sigma(a) = ma$, where $\sigma$ is the linear mapping defined by $$ \sigma(x_1 \ldots x_m) = [\ldots[x_1,x_2],\ldots, x_m] $$ for $x_i \in X$. Friedrichs' theorem says for the case of finite $X$ that $a \in A(X)$ belongs to $L(X)$ if and only if $\delta(a) = 1 \otimes a + a \otimes 1$, where $\delta : A(X) \rightarrow A(X) \otimes A(X)$ is the homomorphism defined by $\delta : x \mapsto 1 \otimes x + x \otimes 1$ for $x \in X$.

Free Lie algebras are the best context for the formulation of the Campbell–Baker–Hausdorff formula in its most general form.

References

[a1] N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))
[a2] N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)
How to Cite This Entry:
Lie algebra, free. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_algebra,_free&oldid=36855
This article was adapted from an original article by Yu.A. Bakhturin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article