Namespaces
Variants
Actions

Lebesgue point

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26B05 Secondary: 28A2049Q15 [MSN][ZBL]

Let $f: \mathbb R^n \to \mathbb R^k$ be an absolutely locally integrable function (with respect to the Lebesgue measure $\lambda$). A Lebesgue point $x$ for $f$ is a point where \[ \lim_{r\downarrow 0} \frac{1}{\lambda (B_r (x))} \int_{B_r (x)} |f(y)-f(x)|\, dy = 0\, . \] Note that a Lebesgue point is, therefore, a point where $f$ is approximately continuous. Viceversa, if $f$ is essentially bounded, then any point of approximate continuity is a Lebesgue point.

The following theorem of Lebesgue holds (see Section 1.7.2 of [EG]).

Theorem 1 Let $f$ be as above. Then $\lambda$-a.e. $x$ is a Lebesgue point for $f$.

The set of Lebesgue points of $f$ is called Lebesgue set.

Comments

This concept (and more in general assertions of the type of the Lebesgue theorem) lie at the foundation of various investigations of problems on convergence almost-everywhere and, in particular, of the investigations concerning singular integrals. A generalizazion is possible for Radon measures in the Euclidean space (see Differentiation of measures).

References

[KF] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961)
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[St] E.M. Stein, "Singular integrals and differentiability properties of functions" , Princeton Univ. Press (1970)
How to Cite This Entry:
Lebesgue point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_point&oldid=29194
This article was adapted from an original article by K.I. Oskolkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article